def cut(self, seps, axis, *args, **kwargs): """ Cuts the tight-binding model into different parts. Creates a tight-binding model by retaining the parameters for the cut-out region, possibly creating a super-cell. Parameters ---------- seps : integer, optional number of times the structure will be cut. axis : integer the axis that will be cut """ new_w = None # Create new geometry with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # Create new cut geometry geom = self.geom.cut(seps, axis, *args, **kwargs) # Check whether the warning exists if len(w) > 0: if issubclass(w[-1].category, UserWarning): new_w = str(w[-1].message) new_w += ( "\n---\n" "The tight-binding model cannot be cut as the structure " "cannot be tiled accordingly. ANY use of the model has been " "relieved from sisl.") if new_w: warnings.warn(new_w, UserWarning) # Now we need to re-create the tight-binding model H = self.tocsr(0) has_S = self.S_idx > 0 if has_S: S = self.tocsr(self.S_idx) # they are created similarly, hence the following # should keep their order # First we need to figure out how long the interaction range is # in the cut-direction # We initialize to be the same as the parent direction nsc = np.copy(self.nsc) // 2 nsc[axis] = 0 # we count the new direction isc = np.zeros([3], np.int32) isc[axis] -= 1 out = False while not out: # Get supercell index isc[axis] += 1 try: idx = self.sc_index(isc) except: break # Figure out if the Hamiltonian has interactions # to 'isc' sub = H[0:geom.no, idx * self.no:(idx + 1) * self.no].indices[:] if has_S: sub = np.unique( np.concatenate( (sub, S[0:geom.no, idx * self.no:(idx + 1) * self.no].indices[:]), axis=0)) if len(sub) == 0: break c_max = np.amax(sub) # Count the number of cells it interacts with i = (c_max % self.no) // geom.no ic = idx * self.no for j in range(i): idx = ic + geom.no * j # We need to ensure that every "in between" index exists # if it does not we discard those indices if len( np.where( np.logical_and(idx <= sub, sub < idx + geom.no))[0]) == 0: i = j - 1 out = True break nsc[axis] = isc[axis] * seps + i if out: warnings.warn( 'Cut the connection at nsc={0} in direction {1}.'.format( nsc[axis], axis), UserWarning) # Update number of super-cells nsc[:] = nsc[:] * 2 + 1 geom.sc.set_nsc(nsc) # Now we have a correct geometry, and # we are now ready to create the sparsity pattern # Reduce the sparsity pattern, first create the new one ham = self.__class__(geom, nnzpr=np.amax(self._data.ncol), spin=self.spin, orthogonal=self.orthogonal) def sco2sco(M, o, m, seps, axis): # Converts an o from M to m isc = np.copy(M.o2isc(o)) isc[axis] = isc[axis] * seps # Correct for cell-offset isc[axis] = isc[axis] + (o % M.no) // m.no # find the equivalent cell in m try: # If a fail happens it is due to a discarded # interaction across a non-interacting region return (o % m.no, m.sc_index(isc) * m.no, m.sc_index(-isc) * m.no) except: return None, None, None # Copy elements if has_S: for jo in range(geom.no): # make smaller cut sH = H[jo, :] sS = S[jo, :] for io, iH in zip(sH.indices, sH.data): # Get the equivalent orbital in the smaller cell o, ofp, ofm = sco2sco(self.geom, io, ham.geom, seps, axis) if o is None: continue ham.H[jo, o + ofp] = iH ham.S[jo, o + ofp] = S[jo, io] ham.H[o, jo + ofm] = iH ham.S[o, jo + ofm] = S[jo, io] if np.any(sH.indices != sS.indices): # Ensure that S is also cut for io, iS in zip(sS.indices, sS.data): # Get the equivalent orbital in the smaller cell o, ofp, ofm = sco2sco(self.geom, io, ham.geom, seps, axis) if o is None: continue ham.H[jo, o + ofp] = H[jo, io] ham.S[jo, o + ofp] = iS ham.H[o, jo + ofm] = H[jo, io] ham.S[o, jo + ofm] = iS else: for jo in range(geom.no): sH = H[jo, :] for io, iH in zip(sH.indices, sH.data): # Get the equivalent orbital in the smaller cell o, ofp, ofm = sco2sco(self.geom, io, ham.geom, seps, axis) if o is None: continue ham[jo, o + ofp] = iH ham[o, jo + ofm] = iH return ham
def density(self, grid, spinor=None, tol=1e-7, eta=False): r""" Expand the density matrix to the charge density on a grid This routine calculates the real-space density components on a specified grid. This is an *in-place* operation that *adds* to the current values in the grid. Note: To calculate :math:`\rho(\mathbf r)` in a unit-cell different from the originating geometry, simply pass a grid with a unit-cell different than the originating supercell. The real-space density is calculated as: .. math:: \rho(\mathbf r) = \sum_{\nu\mu}\phi_\nu(\mathbf r)\phi_\mu(\mathbf r) D_{\nu\mu} While for non-collinear/spin-orbit calculations the density is determined from the spinor component (`spinor`) by .. math:: \rho_{\boldsymbol\sigma}(\mathbf r) = \sum_{\nu\mu}\phi_\nu(\mathbf r)\phi_\mu(\mathbf r) \sum_\alpha [\boldsymbol\sigma \mathbf \rho_{\nu\mu}]_{\alpha\alpha} Here :math:`\boldsymbol\sigma` corresponds to a spinor operator to extract relevant quantities. By passing the identity matrix the total charge is added. By using the Pauli matrix :math:`\boldsymbol\sigma_x` only the :math:`x` component of the density is added to the grid (see `Spin.X`). Parameters ---------- grid : Grid the grid on which to add the density (the density is in ``e/Ang^3``) spinor : (2,) or (2, 2), optional the spinor matrix to obtain the diagonal components of the density. For un-polarized density matrices this keyword has no influence. For spin-polarized it *has* to be either 1 integer or a vector of length 2 (defaults to total density). For non-collinear/spin-orbit density matrices it has to be a 2x2 matrix (defaults to total density). tol : float, optional DM tolerance for accepted values. For all density matrix elements with absolute values below the tolerance, they will be treated as strictly zeros. eta: bool, optional show a progressbar on stdout """ try: # Once unique has the axis keyword, we know we can safely # use it in this routine # Otherwise we raise an ImportError unique([[0, 1], [2, 3]], axis=0) except: raise NotImplementedError( self.__class__.__name__ + '.density requires numpy >= 1.13, either update ' 'numpy or do not use this function!') geometry = self.geometry # Check that the atomic coordinates, really are all within the intrinsic supercell. # If not, it may mean that the DM does not conform to the primary unit-cell paradigm # of matrix elements. It complicates things. fxyz = geometry.fxyz f_min = fxyz.min() f_max = fxyz.max() if f_min < 0 or 1. < f_max: warn( self.__class__.__name__ + '.density has been passed a geometry where some coordinates are ' 'outside the primary unit-cell. This may potentially lead to problems! ' 'Double check the charge density!') del fxyz, f_min, f_max # Extract sub variables used throughout the loop shape = _a.asarrayi(grid.shape) dcell = grid.dcell # Sparse matrix data csr = self._csr # In the following we don't care about division # So 1) save error state, 2) turn off divide by 0, 3) calculate, 4) turn on old error state old_err = np.seterr(divide='ignore', invalid='ignore') # Placeholder for the resulting coefficients DM = None if self.spin.kind > Spin.POLARIZED: if spinor is None: # Default to the total density spinor = np.identity(2, dtype=np.complex128) else: spinor = _a.arrayz(spinor) if spinor.size != 4 or spinor.ndim != 2: raise ValueError( self.__class__.__name__ + '.density with NC/SO spin, requires a 2x2 matrix.') DM = _a.emptyz([self.nnz, 2, 2]) idx = array_arange(csr.ptr[:-1], n=csr.ncol) if self.spin.kind == Spin.NONCOLINEAR: # non-collinear DM[:, 0, 0] = csr._D[idx, 0] DM[:, 1, 1] = csr._D[idx, 1] DM[:, 1, 0] = csr._D[idx, 2] - 1j * csr._D[idx, 3] #TODO check sign here! DM[:, 0, 1] = np.conj(DM[:, 1, 0]) else: # spin-orbit DM[:, 0, 0] = csr._D[idx, 0] + 1j * csr._D[idx, 4] DM[:, 1, 1] = csr._D[idx, 1] + 1j * csr._D[idx, 5] DM[:, 1, 0] = csr._D[idx, 2] - 1j * csr._D[idx, 3] #TODO check sign here! DM[:, 0, 1] = csr._D[idx, 6] + 1j * csr._D[idx, 7] # Perform dot-product with spinor, and take out the diagonal real part DM = dot(DM, spinor.T)[:, [0, 1], [0, 1]].sum(1).real elif self.spin.kind == Spin.POLARIZED: if spinor is None: spinor = _a.onesd(2) elif isinstance(spinor, Integral): # extract the provided spin-polarization s = _a.zerosd(2) s[spinor] = 1. spinor = s else: spinor = _a.arrayd(spinor) if spinor.size != 2 or spinor.ndim != 1: raise ValueError( self.__class__.__name__ + '.density with polarized spin, requires spinor ' 'argument as an integer, or a vector of length 2') idx = array_arange(csr.ptr[:-1], n=csr.ncol) DM = csr._D[idx, 0] * spinor[0] + csr._D[idx, 1] * spinor[1] else: idx = array_arange(csr.ptr[:-1], n=csr.ncol) DM = csr._D[idx, 0] # Create the DM csr matrix. csrDM = csr_matrix( (DM, csr.col[idx], np.insert(np.cumsum(csr.ncol), 0, 0)), shape=(self.shape[:2]), dtype=DM.dtype) # Clean-up del idx, DM # To heavily speed up the construction of the density we can recreate # the sparse csrDM matrix by summing the lower and upper triangular part. # This means we only traverse the sparse UPPER part of the DM matrix # I.e.: # psi_i * DM_{ij} * psi_j + psi_j * DM_{ji} * psi_i # is equal to: # psi_i * (DM_{ij} + DM_{ji}) * psi_j # Secondly, to ease the loops we extract the main diagonal (on-site terms) # and store this for separate usage csr_sum = [None] * geometry.n_s no = geometry.no primary_i_s = geometry.sc_index([0, 0, 0]) for i_s in range(geometry.n_s): # Extract the csr matrix o_start, o_end = i_s * no, (i_s + 1) * no csr = csrDM[:, o_start:o_end] if i_s == primary_i_s: csr_sum[i_s] = triu(csr) + tril(csr, -1).transpose() else: csr_sum[i_s] = csr # Recreate the column-stacked csr matrix csrDM = ss_hstack(csr_sum, format='csr') del csr, csr_sum # Remove all zero elements (note we use the tolerance here!) csrDM.data = np.where(np.fabs(csrDM.data) > tol, csrDM.data, 0.) # Eliminate zeros and sort indices etc. csrDM.eliminate_zeros() csrDM.sort_indices() csrDM.prune() # 1. Ensure the grid has a geometry associated with it sc = grid.sc.copy() if grid.geometry is None: # Create the actual geometry that encompass the grid ia, xyz, _ = geometry.within_inf(sc) if len(ia) > 0: grid.set_geometry(Geometry(xyz, geometry.atom[ia], sc=sc)) # Instead of looping all atoms in the supercell we find the exact atoms # and their supercell indices. add_R = _a.zerosd(3) + geometry.maxR() # Calculate the required additional vectors required to increase the fictitious # supercell by add_R in each direction. # For extremely skewed lattices this will be way too much, hence we make # them square. o = sc.toCuboid(True) sc = SuperCell(o._v, origo=o.origo) + np.diag(2 * add_R) sc.origo -= add_R # Retrieve all atoms within the grid supercell # (and the neighbours that connect into the cell) IA, XYZ, ISC = geometry.within_inf(sc) # Retrieve progressbar eta = tqdm_eta(len(IA), self.__class__.__name__ + '.density', 'atom', eta) cell = geometry.cell atom = geometry.atom axyz = geometry.axyz a2o = geometry.a2o def xyz2spherical(xyz, offset): """ Calculate the spherical coordinates from indices """ rx = xyz[:, 0] - offset[0] ry = xyz[:, 1] - offset[1] rz = xyz[:, 2] - offset[2] # Calculate radius ** 2 xyz_to_spherical_cos_phi(rx, ry, rz) return rx, ry, rz def xyz2sphericalR(xyz, offset, R): """ Calculate the spherical coordinates from indices """ rx = xyz[:, 0] - offset[0] idx = indices_fabs_le(rx, R) ry = xyz[idx, 1] - offset[1] ix = indices_fabs_le(ry, R) ry = ry[ix] idx = idx[ix] rz = xyz[idx, 2] - offset[2] ix = indices_fabs_le(rz, R) ry = ry[ix] rz = rz[ix] idx = idx[ix] if len(idx) == 0: return [], [], [], [] rx = rx[idx] # Calculate radius ** 2 ix = indices_le(rx**2 + ry**2 + rz**2, R**2) idx = idx[ix] if len(idx) == 0: return [], [], [], [] rx = rx[ix] ry = ry[ix] rz = rz[ix] xyz_to_spherical_cos_phi(rx, ry, rz) return idx, rx, ry, rz # Looping atoms in the sparse pattern is better since we can pre-calculate # the radial parts and then add them. # First create a SparseOrbital matrix, then convert to SparseAtom spO = SparseOrbital(geometry, dtype=np.int16) spO._csr = SparseCSR(csrDM) spA = spO.toSparseAtom(dtype=np.int16) del spO na = geometry.na # Remove the diagonal part of the sparse atom matrix off = na * primary_i_s for ia in range(na): del spA[ia, off + ia] # Get pointers and delete the atomic sparse pattern # The below complexity is because we are not finalizing spA csr = spA._csr a_ptr = np.insert(_a.cumsumi(csr.ncol), 0, 0) a_col = csr.col[array_arange(csr.ptr, n=csr.ncol)] del spA, csr # Get offset in supercell in orbitals off = geometry.no * primary_i_s origo = grid.origo # TODO sum the non-origo atoms to the csrDM matrix # this would further decrease the loops required. # Loop over all atoms in the grid-cell for ia, ia_xyz, isc in zip(IA, XYZ - origo.reshape(1, 3), ISC): # Get current atom ia_atom = atom[ia] IO = a2o(ia) IO_range = range(ia_atom.no) cell_offset = (cell * isc.reshape(3, 1)).sum(0) - origo # Extract maximum R R = ia_atom.maxR() if R <= 0.: warn("Atom '{}' does not have a wave-function, skipping atom.". format(ia_atom)) eta.update() continue # Retrieve indices of the grid for the atomic shape idx = grid.index(ia_atom.toSphere(ia_xyz)) # Now we have the indices for the largest orbital on the atom # Subsequently we have to loop the orbitals and the # connecting orbitals # Then we find the indices that overlap with these indices # First reduce indices to inside the grid-cell idx[idx[:, 0] < 0, 0] = 0 idx[shape[0] <= idx[:, 0], 0] = shape[0] - 1 idx[idx[:, 1] < 0, 1] = 0 idx[shape[1] <= idx[:, 1], 1] = shape[1] - 1 idx[idx[:, 2] < 0, 2] = 0 idx[shape[2] <= idx[:, 2], 2] = shape[2] - 1 # Remove duplicates, requires numpy >= 1.13 idx = unique(idx, axis=0) if len(idx) == 0: eta.update() continue # Get real-space coordinates for the current atom # as well as the radial parts grid_xyz = dot(idx, dcell) # Perform loop on connection atoms # Allocate the DM_pj arrays # This will have a size equal to number of elements times number of # orbitals on this atom # In this way we do not have to calculate the psi_j multiple times DM_io = csrDM[IO:IO + ia_atom.no, :].tolil() DM_pj = _a.zerosd([ia_atom.no, grid_xyz.shape[0]]) # Now we perform the loop on the connections for this atom # Remark that we have removed the diagonal atom (it-self) # As that will be calculated in the end for ja in a_col[a_ptr[ia]:a_ptr[ia + 1]]: # Retrieve atom (which contains the orbitals) ja_atom = atom[ja % na] JO = a2o(ja) jR = ja_atom.maxR() # Get actual coordinate of the atom ja_xyz = axyz(ja) + cell_offset # Reduce the ia'th grid points to those that connects to the ja'th atom ja_idx, ja_r, ja_theta, ja_cos_phi = xyz2sphericalR( grid_xyz, ja_xyz, jR) if len(ja_idx) == 0: # Quick step continue # Loop on orbitals on this atom for jo in range(ja_atom.no): o = ja_atom.orbital[jo] oR = o.R # Downsize to the correct indices if jR - oR < 1e-6: ja_idx1 = ja_idx.view() ja_r1 = ja_r.view() ja_theta1 = ja_theta.view() ja_cos_phi1 = ja_cos_phi.view() else: ja_idx1 = indices_le(ja_r, oR) if len(ja_idx1) == 0: # Quick step continue # Reduce arrays ja_r1 = ja_r[ja_idx1] ja_theta1 = ja_theta[ja_idx1] ja_cos_phi1 = ja_cos_phi[ja_idx1] ja_idx1 = ja_idx[ja_idx1] # Calculate the psi_j component psi = o.psi_spher(ja_r1, ja_theta1, ja_cos_phi1, cos_phi=True) # Now add this orbital to all components for io in IO_range: DM_pj[io, ja_idx1] += DM_io[io, JO + jo] * psi # Temporary clean up del ja_idx, ja_r, ja_theta, ja_cos_phi del ja_idx1, ja_r1, ja_theta1, ja_cos_phi1, psi # Now we have all components for all orbitals connection to all orbitals on atom # ia. We simply need to add the diagonal components # Loop on the orbitals on this atom ia_r, ia_theta, ia_cos_phi = xyz2spherical(grid_xyz, ia_xyz) del grid_xyz for io in IO_range: # Only loop halve the range. # This is because: triu + tril(-1).transpose() # removes the lower half of the on-site matrix. for jo in range(io + 1, ia_atom.no): DM = DM_io[io, off + IO + jo] oj = ia_atom.orbital[jo] ojR = oj.R # Downsize to the correct indices if R - ojR < 1e-6: ja_idx1 = slice(None) ja_r1 = ia_r.view() ja_theta1 = ia_theta.view() ja_cos_phi1 = ia_cos_phi.view() else: ja_idx1 = indices_le(ia_r, ojR) if len(ja_idx1) == 0: # Quick step continue # Reduce arrays ja_r1 = ia_r[ja_idx1] ja_theta1 = ia_theta[ja_idx1] ja_cos_phi1 = ia_cos_phi[ja_idx1] # Calculate the psi_j component DM_pj[io, ja_idx1] += DM * oj.psi_spher( ja_r1, ja_theta1, ja_cos_phi1, cos_phi=True) # Calculate the psi_i component # Note that this one *also* zeroes points outside the shell # I.e. this step is important because it "nullifies" all but points where # orbital io is defined. psi = ia_atom.orbital[io].psi_spher(ia_r, ia_theta, ia_cos_phi, cos_phi=True) DM_pj[io, :] += DM_io[io, off + IO + io] * psi DM_pj[io, :] *= psi # Temporary clean up ja_idx1 = ja_r1 = ja_theta1 = ja_cos_phi1 = None del ia_r, ia_theta, ia_cos_phi, psi, DM_io # Now add the density grid.grid[idx[:, 0], idx[:, 1], idx[:, 2]] += DM_pj.sum(0) # Clean-up del DM_pj, idx eta.update() eta.close() # Reset the error code for division np.seterr(**old_err)
def func(self, ia, idxs, idxs_xyz=None): idx = self.geom.close(ia, dR=dR, idx=idxs, idx_xyz=idxs_xyz) for ix, p in zip(idx, param): self.H[ia, ix] = p[:-1] self.S[ia, ix] = p[-1]