Пример #1
0
    def test_comparing_same_matrices(self):
        for method in self.methods:
            obs = mantel(self.minx, self.minx, method=method)[0]
            self.assertAlmostEqual(obs, 1)

            obs = mantel(self.miny, self.miny, method=method)[0]
            self.assertAlmostEqual(obs, 1)
Пример #2
0
    def test_two_sided(self):
        np.random.seed(0)

        obs = mantel(self.minx,
                     self.minx,
                     method='spearman',
                     alternative='two-sided')
        self.assertEqual(obs[0], 1)
        self.assertAlmostEqual(obs[1], 0.328)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx,
                     self.miny,
                     method='spearman',
                     alternative='two-sided')
        self.assertAlmostEqual(obs[0], 0.5)
        self.assertAlmostEqual(obs[1], 1.0)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx,
                     self.minz,
                     method='spearman',
                     alternative='two-sided')
        self.assertAlmostEqual(obs[0], -1)
        self.assertAlmostEqual(obs[1], 0.322)
        self.assertEqual(obs[2], 3)
Пример #3
0
    def test_comparing_same_matrices(self):
        for method in self.methods:
            obs = mantel(self.minx, self.minx, method=method)[0]
            self.assertAlmostEqual(obs, 1)

            obs = mantel(self.miny, self.miny, method=method)[0]
            self.assertAlmostEqual(obs, 1)
Пример #4
0
    def test_invalid_distance_matrix(self):
        # Single asymmetric, non-hollow distance matrix.
        with self.assertRaises(DissimilarityMatrixError):
            mantel([[1, 2], [3, 4]], [[0, 0], [0, 0]])

        # Two asymmetric distance matrices.
        with self.assertRaises(DistanceMatrixError):
            mantel([[0, 2], [3, 0]], [[0, 1], [0, 0]])
Пример #5
0
    def test_invalid_distance_matrix(self):
        # Single asymmetric, non-hollow distance matrix.
        with self.assertRaises(DissimilarityMatrixError):
            mantel([[1, 2], [3, 4]], [[0, 0], [0, 0]])

        # Two asymmetric distance matrices.
        with self.assertRaises(DistanceMatrixError):
            mantel([[0, 2], [3, 0]], [[0, 1], [0, 0]])
Пример #6
0
    def test_one_sided_greater(self):
        np.random.seed(0)

        obs = mantel(self.minx, self.miny, alternative='greater')
        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.324)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx, self.minx, alternative='greater')
        self.assert_mantel_almost_equal(obs, [1, 0.172, 3])
Пример #7
0
    def test_one_sided_greater(self):
        np.random.seed(0)

        obs = mantel(self.minx, self.miny, alternative='greater')
        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.324)

        obs = mantel(self.minx, self.minx, alternative='greater')
        self.assertAlmostEqual(obs[0], 1)
        self.assertAlmostEqual(obs[1], 0.172)
Пример #8
0
def get_pairwise_diversity_data(pre_bioms, post_bioms, trim_lengths):
    """For each pre-post pair, gets the pairwise distance matrix of each
    sequence set and does a mantel test between pre and post pariwise distance
    matrices using both jaccard and bray-curtis metrics

    Parameters
    ----------
    pre_bioms: array_like of biom.Table
        pre-trimmed Artifacts in descending trim length order. Should be in
        same order as post_bioms
    post_bioms: array_like of biom.Table
        post-trimmed Artifacts in descending trim length order. Should be in
        same order as pre_bioms
    trim_lengths: array_like
        Trim lengths in descending order, should correspond to other arguments

    Returns
    -------
    Pandas dataframe that holds results for each pre-post mantel test
    """
    print("enter get_pairwise_diversity")
    np.seterr(all="raise")
    if(not (len(pre_bioms) == len(post_bioms) == len(trim_lengths))):
        raise ValueError("Length of 3 arguments lists should be same\n"
                         "pre: {}, post: {}, lengths: {}".format(len(pre_bioms),
                                                                 len(post_bioms),
                                                                 len(trim_lengths)))

    cols = ["trim_length", "dist_type", "r", "pval", "nsamples"]
    p_div = pd.DataFrame(index=range(2*len(pre_bioms)), columns=cols)
    j = 0
    for i in range(len(pre_bioms)):
        # pairwise distance matrices
        pre_biom = pre_bioms[i]
        post_biom = post_bioms[i]

        pre_d_j = get_pairwise_dist_mat(pre_biom, "jaccard")
        post_d_j = get_pairwise_dist_mat(post_biom, "jaccard")
        r, p, nsamp = mantel(pre_d_j, post_d_j)
        p_div.iloc[j] = [trim_lengths[i], "jaccard", r, p, nsamp]
        j += 1

        pre_d_bc = get_pairwise_dist_mat(pre_biom, "braycurtis")
        post_d_bc = get_pairwise_dist_mat(post_biom, "braycurtis")
        print("pre_d_bc, i: {}".format(i))
        print(str(pre_d_bc))
        print("post_d_bc")
        print(str(post_d_bc))
        r, p, nsamp = mantel(pre_d_bc, post_d_bc)
        print("r: {}, p: {}".format(str(r),str(p)))
        p_div.iloc[j] = [trim_lengths[i], "braycurtis", r, p, nsamp]

    p_div["r_sq"] = p_div["r"]**2
    print("exit get_pairwise_diversity")
    return p_div
Пример #9
0
    def test_no_variation_spearman(self):
        exp = (np.nan, np.nan, 3)
        for alt in self.alternatives:
            obs = mantel(self.miny, self.no_variation, method="spearman", alternative=alt)
            npt.assert_equal(obs, exp)

            obs = mantel(self.no_variation, self.miny, method="spearman", alternative=alt)
            npt.assert_equal(obs, exp)

            obs = mantel(self.no_variation, self.no_variation, method="spearman", alternative=alt)
            npt.assert_equal(obs, exp)
Пример #10
0
    def test_no_side_effects(self):
        minx = np.asarray(self.minx, dtype='float')
        miny = np.asarray(self.miny, dtype='float')

        minx_copy = np.copy(minx)
        miny_copy = np.copy(miny)

        mantel(minx, miny)

        # Make sure we haven't modified the input.
        npt.assert_equal(minx, minx_copy)
        npt.assert_equal(miny, miny_copy)
Пример #11
0
    def test_no_side_effects(self):
        minx = np.asarray(self.minx, dtype='float')
        miny = np.asarray(self.miny, dtype='float')

        minx_copy = np.copy(minx)
        miny_copy = np.copy(miny)

        mantel(minx, miny)

        # Make sure we haven't modified the input.
        npt.assert_equal(minx, minx_copy)
        npt.assert_equal(miny, miny_copy)
Пример #12
0
    def test_zero_permutations(self):
        for alt in self.alternatives:
            for method, exp in (("pearson", self.exp_x_vs_y), ("spearman", 0.5)):
                obs = mantel(self.minx, self.miny, permutations=0, method=method, alternative=alt)
                self.assertAlmostEqual(obs[0], exp)
                npt.assert_equal(obs[1], np.nan)
                self.assertEqual(obs[2], 3)

                # swapping order of matrices should give same result
                obs = mantel(self.miny, self.minx, permutations=0, method=method, alternative=alt)
                self.assertAlmostEqual(obs[0], exp)
                npt.assert_equal(obs[1], np.nan)
                self.assertEqual(obs[2], 3)
Пример #13
0
    def test_no_variation_spearman(self):
        exp = (np.nan, np.nan, 3)
        for alt in self.alternatives:
            obs = mantel(self.miny, self.no_variation, method='spearman',
                         alternative=alt)
            npt.assert_equal(obs, exp)

            obs = mantel(self.no_variation, self.miny, method='spearman',
                         alternative=alt)
            npt.assert_equal(obs, exp)

            obs = mantel(self.no_variation, self.no_variation,
                         method='spearman', alternative=alt)
            npt.assert_equal(obs, exp)
Пример #14
0
    def test_vegan_example(self):
        np.random.seed(0)

        # pearson
        obs = mantel(self.veg_dm_vegan, self.env_dm_vegan, alternative="greater")
        self.assertAlmostEqual(obs[0], 0.3047454)
        self.assertAlmostEqual(obs[1], 0.002)
        self.assertEqual(obs[2], 24)

        # spearman
        obs = mantel(self.veg_dm_vegan, self.env_dm_vegan, alternative="greater", method="spearman")
        self.assertAlmostEqual(obs[0], 0.283791)
        self.assertAlmostEqual(obs[1], 0.003)
        self.assertEqual(obs[2], 24)
Пример #15
0
    def test_distance_matrix_instances_with_reordering_and_nonmatching(self):
        x = self.minx_dm_extra.filter(['1', '0', 'foo', '2'])
        y = self.miny_dm.filter(['0', '2', '1'])

        # strict=True should disallow IDs that aren't found in both matrices
        with self.assertRaises(ValueError):
            mantel(x, y, alternative='less', strict=True)

        np.random.seed(0)

        # strict=False should ignore IDs that aren't found in both matrices
        obs = mantel(x, y, alternative='less', strict=False)

        self.assert_mantel_almost_equal(obs, [self.exp_x_vs_y, 0.843, 3])
Пример #16
0
    def test_no_variation_pearson(self):
        # Output doesn't match vegan::mantel with method='pearson'. Consider
        # revising output and this test depending on outcome of
        # https://github.com/scipy/scipy/issues/3728
        for alt in self.alternatives:
            # test one or both inputs having no variation in their
            # distances
            obs = mantel(self.miny, self.no_variation, method="pearson", alternative=alt)
            npt.assert_equal(obs, (0.0, 1.0, 3))

            obs = mantel(self.no_variation, self.miny, method="pearson", alternative=alt)
            npt.assert_equal(obs, (0.0, 1.0, 3))

            obs = mantel(self.no_variation, self.no_variation, method="pearson", alternative=alt)
            npt.assert_equal(obs, (1.0, 1.0, 3))
Пример #17
0
    def test_vegan_example(self):
        np.random.seed(0)

        # pearson
        obs = mantel(self.veg_dm_vegan,
                     self.env_dm_vegan,
                     alternative='greater')
        self.assert_mantel_almost_equal(obs, [0.3047454, 0.002, 24])

        # spearman
        obs = mantel(self.veg_dm_vegan,
                     self.env_dm_vegan,
                     alternative='greater',
                     method='spearman')
        self.assert_mantel_almost_equal(obs, [0.283791, 0.003, 24])
Пример #18
0
def compare_clusters(args):

    ref_df = pd.read_table(args['ref'], sep='\t', skipinitialspace=True, index_col=0).as_matrix()
    check_symmetry(ref_df)
    linkage_ref = linkage(ref_df, 'average')
    c_ref, coph_dists_ref = cophenet(linkage_ref, pdist(ref_df))

    outfile = open(args['output'],"w")
    outfile.write("Tree_cluster\tMantel_Correlation_Coefficient\tManter_P-value\tCophenetic_Pearson\tCophenetic_P-value\n")

    for i in args['all']:
        fst_df = pd.read_table(i, sep='\t', skipinitialspace=True, index_col=0).as_matrix()
        check_symmetry(fst_df)
        mantel_coeff = 0.0
        p_value_mantel = 0.0
        cophenetic_pearson = 0.0
        p_value_cophenetic = 0.0
        n = 0
        try:
            mantel_coeff, p_value_mantel, n = mantel(ref_df, fst_df)
            linkage_fst = linkage(fst_df, 'average')
            c_fst, coph_dists_fst = cophenet(linkage_fst, pdist(fst_df))
            cophenetic_pearson, p_value_cophenetic = pearsonr(coph_dists_ref, coph_dists_fst)
        except Exception as e:
            print("Error : %s" % str(e))
            mantel_coeff = "Failed"
            p_value_manel = "Failed"
            cophenetic_pearson = "Failed"
            p_value_cophenetic = "Failed"

        outfile.write(i+"\t"+str(mantel_coeff)+"\t"+str(p_value_mantel)+"\t"+str(cophenetic_pearson)+"\t"+str(p_value_cophenetic)+"\n")

    outfile.close()
Пример #19
0
    def test_distance_matrix_instances_as_input(self):
        # Matrices with all matching IDs in the same order.
        np.random.seed(0)

        obs = mantel(self.minx_dm, self.miny_dm, alternative='less')

        self.assert_mantel_almost_equal(obs, [self.exp_x_vs_y, 0.843, 3])
Пример #20
0
def compare_multiple(pose_data,
                     method='distance',
                     figure_type='aligned_figures'):
    """ For multi-dancer videos: Get the mean and standard deviation of inter-pose
        similarities for each frame
    """
    frame_means = []
    frame_stdevs = []
    for f, frame in enumerate(pose_data):
        print("Processing frame", f, "of", len(pose_data))
        frame_similarities = []
        for i, figure_i in enumerate(frame[figure_type]):
            for j, figure_j in enumerate(frame[figure_type]):
                if i < j:
                    if method == 'distance':
                        mi = get_pose_matrix(frame, i)
                        mj = get_pose_matrix(frame, j)
                        if mi is None or mj is None:
                            similarity = np.nan
                        else:
                            similarity = mantel(mi, mj)[0]
                    else:  # method == 'laplacian'
                        mi = get_laplacian_matrix(frame, i)
                        mj = get_laplacian_matrix(frame, j)
                        if mi is None or mj is None:
                            similarity = np.nan
                        else:
                            similarity = 1 - abs(
                                np.subtract(mi.todense(), mj.todense()).sum())
                    frame_similarities.append(similarity)

        frame_means.append(np.nanmean(frame_similarities))
        frame_stdevs.append(np.nanstd(frame_similarities))

    return [frame_means, frame_stdevs]
Пример #21
0
    def test_distance_matrix_instances_with_reordering_and_nonmatching(self):
        x = self.minx_dm_extra.filter(['1', '0', 'foo', '2'])
        y = self.miny_dm.filter(['0', '2', '1'])

        # strict=True should disallow IDs that aren't found in both matrices
        with self.assertRaises(ValueError):
            mantel(x, y, alternative='less', strict=True)

        np.random.seed(0)

        # strict=False should ignore IDs that aren't found in both matrices
        obs = mantel(x, y, alternative='less', strict=False)

        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)
Пример #22
0
    def test_vegan_example(self):
        np.random.seed(0)

        # pearson
        obs = mantel(self.veg_dm_vegan, self.env_dm_vegan,
                     alternative='greater')
        self.assertAlmostEqual(obs[0], 0.3047454)
        self.assertAlmostEqual(obs[1], 0.002)
        self.assertEqual(obs[2], 24)

        # spearman
        obs = mantel(self.veg_dm_vegan, self.env_dm_vegan,
                     alternative='greater', method='spearman')
        self.assertAlmostEqual(obs[0], 0.283791)
        self.assertAlmostEqual(obs[1], 0.003)
        self.assertEqual(obs[2], 24)
Пример #23
0
def calc_dist_mat_corr(sim_mat, distance_dict):
    """Calculate correlation of different distance matrices with similarity matrix."""
    dist_mat = create_symm_dist_mat(sim_mat)

    for feature_type in FEAT_LIST:
        coeff, p_value, n = mantel(dist_mat, distance_dict[feature_type])
        print("Feature type: %s Coeff: %.3f" % (feature_type, coeff))
Пример #24
0
    def test_zero_permutations(self):
        for alt in self.alternatives:
            for method, exp in (('pearson', self.exp_x_vs_y),
                                ('spearman', 0.5)):
                obs = mantel(self.minx, self.miny, permutations=0,
                             method=method, alternative=alt)
                self.assertAlmostEqual(obs[0], exp)
                npt.assert_equal(obs[1], np.nan)
                self.assertEqual(obs[2], 3)

                # swapping order of matrices should give same result
                obs = mantel(self.miny, self.minx, permutations=0,
                             method=method, alternative=alt)
                self.assertAlmostEqual(obs[0], exp)
                npt.assert_equal(obs[1], np.nan)
                self.assertEqual(obs[2], 3)
Пример #25
0
    def test_hommola_vs_mantel(self):
        # we don't compare p-values because the two methods use different
        # permutation strategies
        r_mantel, p_mantel, _ = mantel(self.hdist, self.pdist, method="pearson", permutations=0, alternative="greater")
        r_hommola, p_hommola, _ = hommola_cospeciation(self.hdist, self.pdist, self.interact_1to1, permutations=0)

        self.assertAlmostEqual(r_hommola, r_mantel)
        npt.assert_equal(p_hommola, p_mantel)
Пример #26
0
    def test_two_sided(self):
        np.random.seed(0)

        obs = mantel(self.minx, self.minx, method="spearman", alternative="two-sided")
        self.assertEqual(obs[0], 1)
        self.assertAlmostEqual(obs[1], 0.328)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx, self.miny, method="spearman", alternative="two-sided")
        self.assertAlmostEqual(obs[0], 0.5)
        self.assertAlmostEqual(obs[1], 1.0)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx, self.minz, method="spearman", alternative="two-sided")
        self.assertAlmostEqual(obs[0], -1)
        self.assertAlmostEqual(obs[1], 0.322)
        self.assertEqual(obs[2], 3)
Пример #27
0
def calc_corr(sim_mat1, sim_mat2):
    """Calculate correlation between symmetric and non-symmetric matrices."""
    non_symm_corr = pearsonr(get_non_diagonal_entries(sim_mat1),
                             get_non_diagonal_entries(sim_mat2))[0]
    symm_corr = mantel(create_symm_dist_mat(sim_mat1),
                       create_symm_dist_mat(sim_mat2))[0]
    print ("Correlation between non-diagonal entries: %.3f" %non_symm_corr)
    print ("Mantel correlation: %.3f" %symm_corr)
Пример #28
0
    def test_one_sided_less(self):
        # no need to seed here as permuted test statistics will all be less
        # than or equal to the observed test statistic (1.0)
        for method in self.methods:
            obs = mantel(self.minx, self.minx, method=method,
                         alternative='less')
            self.assertEqual(obs, (1, 1))

        np.random.seed(0)

        obs = mantel(self.minx, self.miny, alternative='less')
        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)

        obs = mantel(self.minx, self.minz, alternative='less')
        self.assertAlmostEqual(obs[0], self.exp_x_vs_z)
        self.assertAlmostEqual(obs[1], 0.172)
Пример #29
0
    def test_one_sided_less(self):
        # no need to seed here as permuted test statistics will all be less
        # than or equal to the observed test statistic (1.0)
        for method in self.methods:
            obs = mantel(self.minx,
                         self.minx,
                         method=method,
                         alternative='less')
            npt.assert_almost_equal(obs, (1, 1, 3))

        np.random.seed(0)

        obs = mantel(self.minx, self.miny, alternative='less')
        self.assert_mantel_almost_equal(obs, [self.exp_x_vs_y, 0.843, 3])

        obs = mantel(self.minx, self.minz, alternative='less')
        self.assert_mantel_almost_equal(obs, [self.exp_x_vs_z, 0.172, 3])
Пример #30
0
def compare_tip_to_tip_distances(tree_fh1, tree_fh2, method="pearson"):
    tree1 = TreeNode.read(tree_fh1)
    tree2 = TreeNode.read(tree_fh2)

    dm1 = tree1.tip_tip_distances()
    dm2 = tree2.tip_tip_distances()

    return mantel(dm1, dm2, strict=False, method=method)
Пример #31
0
 def test_statistic_same_across_alternatives_and_permutations(self):
     # Varying permutations and alternative hypotheses shouldn't affect the
     # computed test statistics.
     for n in (0, 99, 999):
         for alt in self.alternatives:
             for method, exp in (("pearson", self.exp_x_vs_y), ("spearman", 0.5)):
                 obs = mantel(self.minx, self.miny, method=method, permutations=n, alternative=alt)[0]
                 self.assertAlmostEqual(obs, exp)
def diversity_analysis(wu_dm_list,bc_dm_list):
    from skbio.stats.distance import mantel
    #do the UniFrac and  Bray-Curtis distances correlate? 
    r, p_value, n = mantel(wu_dm_list[0],bc_dm_list[0])
    print("Mantel Correlation COEF=",r)
    print("At significance of 0.05, the p-value for the correlation is = ",p_value)
    #next perform principle coordinate analysis (PCoA) on the weighted UniFrac distance matrix:
    from skbio.stats.ordination import pcoa
    wu_pc = pcoa(wu_dm_list[0])
Пример #33
0
    def test_no_variation_pearson(self):
        # Output doesn't match vegan::mantel with method='pearson'. Consider
        # revising output and this test depending on outcome of
        # https://github.com/scipy/scipy/issues/3728
        for alt in self.alternatives:
            # test one or both inputs having no variation in their
            # distances
            obs = mantel(self.miny, self.no_variation, method='pearson',
                         alternative=alt)
            npt.assert_equal(obs, (0.0, 1.0, 3))

            obs = mantel(self.no_variation, self.miny, method='pearson',
                         alternative=alt)
            npt.assert_equal(obs, (0.0, 1.0, 3))

            obs = mantel(self.no_variation, self.no_variation,
                         method='pearson', alternative=alt)
            npt.assert_equal(obs, (1.0, 1.0, 3))
Пример #34
0
def find_nearest_pose(pose_matrix, cluster_averages):
    best_corr = 0
    best_label = -1
    for label in cluster_averages:
        corr = mantel(pose_matrix, cluster_averages[label])[0]
        if corr > best_corr:
            best_label = label
            best_corr = corr
    return best_label
Пример #35
0
    def test_distance_matrix_instances_as_input(self):
        # Matrices with all matching IDs in the same order.
        np.random.seed(0)

        obs = mantel(self.minx_dm, self.miny_dm, alternative='less')

        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)
Пример #36
0
    def test_distance_matrix_instances_as_input(self):
        # Matrices with all matching IDs in the same order.
        np.random.seed(0)

        obs = mantel(self.minx_dm, self.miny_dm, alternative='less')

        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)
Пример #37
0
    def test_one_sided_less(self):
        # no need to seed here as permuted test statistics will all be less
        # than or equal to the observed test statistic (1.0)
        for method in self.methods:
            obs = mantel(self.minx, self.minx, method=method,
                         alternative='less')
            self.assertEqual(obs, (1, 1, 3))

        np.random.seed(0)

        obs = mantel(self.minx, self.miny, alternative='less')
        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)

        obs = mantel(self.minx, self.minz, alternative='less')
        self.assertAlmostEqual(obs[0], self.exp_x_vs_z)
        self.assertAlmostEqual(obs[1], 0.172)
        self.assertEqual(obs[2], 3)
Пример #38
0
 def test_statistic_same_across_alternatives_and_permutations(self):
     # Varying permutations and alternative hypotheses shouldn't affect the
     # computed test statistics.
     for n in (0, 99, 999):
         for alt in self.alternatives:
             for method, exp in (('pearson', self.exp_x_vs_y),
                                 ('spearman', 0.5)):
                 obs = mantel(self.minx, self.miny, method=method,
                              permutations=n, alternative=alt)[0]
                 self.assertAlmostEqual(obs, exp)
Пример #39
0
    def test_distance_matrix_instances_with_lookup(self):
        self.minx_dm.ids = ("a", "b", "c")
        self.miny_dm.ids = ("d", "e", "f")
        lookup = {"a": "A", "b": "B", "c": "C", "d": "A", "e": "B", "f": "C"}

        np.random.seed(0)

        obs = mantel(self.minx_dm, self.miny_dm, alternative="less", lookup=lookup)
        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)
Пример #40
0
    def test_two_sided(self):
        np.random.seed(0)

        obs = mantel(self.minx,
                     self.minx,
                     method='spearman',
                     alternative='two-sided')
        self.assert_mantel_almost_equal(obs, [1.0, 0.328, 3])

        obs = mantel(self.minx,
                     self.miny,
                     method='spearman',
                     alternative='two-sided')
        self.assert_mantel_almost_equal(obs, [0.5, 1.0, 3])

        obs = mantel(self.minx,
                     self.minz,
                     method='spearman',
                     alternative='two-sided')
        self.assert_mantel_almost_equal(obs, [-1, 0.322, 3])
Пример #41
0
    def test_invalid_input(self):
        # invalid correlation method
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], method='brofist')

        # invalid permutations
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], permutations=-1)

        # invalid alternative
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], alternative='no cog yay')

        # mismatched shape
        with self.assertRaises(ValueError):
            mantel(self.minx, [[0, 2], [2, 0]])

        # too small dms
        with self.assertRaises(ValueError):
            mantel([[0, 3], [3, 0]], [[0, 2], [2, 0]])
Пример #42
0
    def test_distance_matrix_instances_as_input(self):
        # IDs shouldn't matter -- the function should only care about the
        # matrix data
        dmx = DistanceMatrix(self.minx)
        dmy = DistanceMatrix(self.miny, ['no', 'cog', 'yay'])

        np.random.seed(0)

        obs = mantel(dmx, dmy, alternative='less')

        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
Пример #43
0
    def test_no_variation_pearson(self):
        for alt in self.alternatives:
            # test one or both inputs having no variation in their
            # distances
            obs = mantel(self.miny,
                         self.no_variation,
                         method='pearson',
                         alternative=alt)
            npt.assert_equal(obs, (np.nan, np.nan, 3))

            obs = mantel(self.no_variation,
                         self.miny,
                         method='pearson',
                         alternative=alt)
            npt.assert_equal(obs, (np.nan, np.nan, 3))

            obs = mantel(self.no_variation,
                         self.no_variation,
                         method='pearson',
                         alternative=alt)
            npt.assert_equal(obs, (np.nan, np.nan, 3))
Пример #44
0
    def test_distance_matrix_instances_with_lookup(self):
        self.minx_dm.ids = ('a', 'b', 'c')
        self.miny_dm.ids = ('d', 'e', 'f')
        lookup = {'a': 'A', 'b': 'B', 'c': 'C', 'd': 'A', 'e': 'B', 'f': 'C'}

        np.random.seed(0)

        obs = mantel(self.minx_dm,
                     self.miny_dm,
                     alternative='less',
                     lookup=lookup)
        self.assert_mantel_almost_equal(obs, [self.exp_x_vs_y, 0.843, 3])
Пример #45
0
    def test_distance_matrix_instances_with_lookup(self):
        self.minx_dm.ids = ('a', 'b', 'c')
        self.miny_dm.ids = ('d', 'e', 'f')
        lookup = {'a': 'A', 'b': 'B', 'c': 'C',
                  'd': 'A', 'e': 'B', 'f': 'C'}

        np.random.seed(0)

        obs = mantel(self.minx_dm, self.miny_dm, alternative='less',
                     lookup=lookup)
        self.assertAlmostEqual(obs[0], self.exp_x_vs_y)
        self.assertAlmostEqual(obs[1], 0.843)
        self.assertEqual(obs[2], 3)
Пример #46
0
    def test_invalid_input(self):
        # invalid correlation method
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], method="brofist")

        # invalid permutations
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], permutations=-1)

        # invalid alternative
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], alternative="no cog yay")

        # too small dms
        with self.assertRaises(ValueError):
            mantel([[0, 3], [3, 0]], [[0, 2], [2, 0]])
Пример #47
0
    def test_invalid_input(self):
        # invalid correlation method
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], method='brofist')

        # invalid permutations
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], permutations=-1)

        # invalid alternative
        with self.assertRaises(ValueError):
            mantel([[1]], [[1]], alternative='no cog yay')

        # too small dms
        with self.assertRaises(ValueError):
            mantel([[0, 3], [3, 0]], [[0, 2], [2, 0]])
Пример #48
0
    def test_hommola_vs_mantel(self):
        # we don't compare p-values because the two methods use different
        # permutation strategies
        r_mantel, p_mantel, _ = mantel(self.hdist,
                                       self.pdist,
                                       method='pearson',
                                       permutations=0,
                                       alternative='greater')
        r_hommola, p_hommola, _ = hommola_cospeciation(self.hdist,
                                                       self.pdist,
                                                       self.interact_1to1,
                                                       permutations=0)

        self.assertAlmostEqual(r_hommola, r_mantel)
        npt.assert_equal(p_hommola, p_mantel)
Пример #49
0
def compare_trees(tree_fp1, tree_fp2, method):

    itstree = TreeNode.read(tree_fp1)
    hybridtree = TreeNode.read(tree_fp2)

    itstreedm = itstree.tip_tip_distances()
    hybridtreedm = hybridtree.tip_tip_distances()

    coeff, p_value, n = mantel(itstreedm,
                               hybridtreedm,
                               strict=False,
                               method=method)

    click.echo("Correlation coefficient: %f" % coeff)
    click.echo("P-value: %f" % p_value)
    click.echo("Number of overlapping tips: %d" % n)
def compute_mantel(result_tables,
                   taxonomy_level=6,
                   random_trials=999):
    """ Compute mantel r and p-values for a set of results

        result_tables: 2d list of tables to be compared,
         where the data in the inner list is:
          [dataset_id, reference_database_id, method_id,
           parameter_combination_id, table_fp]
        taxonomy_level: level to compute results
        random_trials : number of Monte Carlo trials to run in Mantel test
    """
    collapse_by_taxonomy = get_taxonomy_collapser(taxonomy_level)
    results = []

    for dataset_id, reference_id, method_id, params, actual_table_fp in result_tables:
        ## load the table and collapse it at the specified taxonomic level
        try:
            full_table = load_table(actual_table_fp)
        except ValueError:
            raise ValueError("Couldn't parse BIOM table: %s" % actual_table_fp)
        collapsed_table = full_table.collapse(collapse_by_taxonomy,
                                              axis='observation',
                                              min_group_size=1)

        ## Compute Bray-Curtis distances between samples in the full table and
        ## in the collapsed table, and compare them with Mantel.
        # This is way too compute-intensive because we're computing the actual
        # dm everytime, which doesn't need to happen.
        collapsed_dm = distance_matrix_from_table(collapsed_table)
        full_dm = distance_matrix_from_table(full_table)
        mantel_r, p = mantel(collapsed_dm, full_dm)

        results.append((dataset_id, reference_id, method_id, params, mantel_r, p))

    return pd.DataFrame(results, columns=["Dataset", "Reference", "Method",
                                           "Parameters", "Mantel r", "Mantel p"])
Пример #51
0
def run_mantel_test(method, fps, distmats, num_perms, tail_type, comment,
                    control_dm_fp=None, control_dm=None,
                    sample_id_map=None):
    """Runs a Mantel test on all pairs of distance matrices.

    Returns a string suitable for writing out to a file containing the results
    of the test.

    WARNING: Only symmetric, hollow distance matrices may be used as input.
    Asymmetric distance matrices, such as those obtained by the UniFrac Gain
    metric (i.e. beta_diversity.py -m unifrac_g), should not be used as input.

    Arguments:
        method - which Mantel test to run (either 'mantel' or 'partial_mantel')
        fps - list of filepaths of the distance matrices
        distmats - list of tuples containing dm labels and dm data (i.e. the
            output of parse_distmat)
        num_perms - the number of permutations to use to calculate the
            p-value(s)
        tail_type - the type of tail test to use when calculating the
            p-value(s). Can be 'two-sided', 'greater', or 'less'. Only applies
            when method is mantel
        comment - comment string to add to the beginning of the results string
        control_dm_fp - filepath of the control distance matrix. Only applies
            when method is partial_mantel (it is required then)
        control_dm - tuple containing control distance matrix labels and matrix
            data. Only applies when method is partial_mantel (it is required
            then)
        sample_id_map - dict mapping sample IDs (i.e. what is expected by
            make_compatible_distance_matrices)
    """
    if len(fps) != len(distmats):
        raise ValueError("Must provide the same number of filepaths as there "
                         "are distance matrices.")
    if comment is None:
        comment = ''
    result = comment

    if method == 'mantel':
        result += 'DM1\tDM2\tNumber of entries\tMantel r statistic\t' + \
                  'p-value\tNumber of permutations\tTail type\n'
    elif method == 'partial_mantel':
        if not control_dm_fp or not control_dm:
            raise ValueError("You must provide a control matrix filepath and "
                             "control matrix when running the partial Mantel "
                             "test.")
        result += 'DM1\tDM2\tCDM\tNumber of entries\t' + \
            'Mantel r statistic\tp-value\tNumber of permutations\t' +\
            'Tail type\n'
    else:
        raise ValueError("Invalid method '%s'. Must be either 'mantel' or "
                         "'partial_mantel'." % method)

    # Loop over all pairs of dms.
    for i, (fp1, (dm1_labels, dm1_data)) in enumerate(zip(fps, distmats)):
        for fp2, (dm2_labels, dm2_data) in zip(fps, distmats)[i + 1:]:
            # Make the current pair of distance matrices compatible by only
            # keeping samples that match between them, and ordering them by
            # the same sample IDs.
            (dm1_labels, dm1_data), (dm2_labels, dm2_data) = \
                make_compatible_distance_matrices((dm1_labels, dm1_data),
                                                  (dm2_labels, dm2_data), lookup=sample_id_map)
            if method == 'partial_mantel':
                # We need to intersect three sets (three matrices).
                (dm1_labels, dm1_data), (cdm_labels, cdm_data) = \
                    make_compatible_distance_matrices(
                        (dm1_labels, dm1_data), control_dm,
                        lookup=sample_id_map)
                (dm1_labels, dm1_data), (dm2_labels, dm2_data) = \
                    make_compatible_distance_matrices(
                        (dm1_labels, dm1_data), (dm2_labels, dm2_data),
                        lookup=sample_id_map)
                if len(dm1_labels) < 3:
                    result += '%s\t%s\t%s\t%d\tToo few samples\n' % (fp1,
                                                                     fp2, control_dm_fp, len(dm1_labels))
                    continue
            elif len(dm1_labels) < 3:
                result += '%s\t%s\t%d\tToo few samples\n' % (fp1, fp2,
                                                             len(dm1_labels))
                continue

            dm1 = DistanceMatrix(dm1_data, dm1_labels)
            dm2 = DistanceMatrix(dm2_data, dm2_labels)

            if method == 'mantel':
                corr_coeff, p_value, n = mantel(dm1, dm2, method='pearson',
                                 permutations=num_perms, alternative=tail_type,
                                 strict=True)
                p_str = p_value_to_str(p_value, num_perms)
                result += "%s\t%s\t%d\t%.5f\t%s\t%d\t%s\n" % (
                    fp1, fp2, n, corr_coeff, p_str, num_perms, tail_type)
            elif method == 'partial_mantel':
                cdm = DistanceMatrix(cdm_data, cdm_labels)
                results = PartialMantel(dm1, dm2, cdm)(num_perms)
                p_str = p_value_to_str(results['mantel_p'], num_perms)
                result += "%s\t%s\t%s\t%d\t%.5f\t%s\t%d\t%s\n" % (
                    fp1, fp2, control_dm_fp, len(dm1_labels),
                    results['mantel_r'], p_str, num_perms, 'greater')
    return result
Пример #52
0
 def test_negative_correlation(self):
     for method, exp in (('pearson', self.exp_x_vs_z), ('spearman', -1)):
         obs = mantel(self.minx, self.minz, method=method)[0]
         self.assertAlmostEqual(obs, exp)