def setUp(self): np.random.seed(0) linalg.init() rlinalg.init()
import pycuda.gpuarray as gpuarray import pycuda.autoinit import numpy as np from skcuda import linalg, rlinalg import sys import timeit from datetime import datetime from sklearn.decomposition import RandomizedPCA linalg.init() rlinalg.init() a = np.load( open('/if10/spk3rw/nytimesdata/matrix_' + str(sys.argv[1]) + '_docs.bin')) a = a.astype(np.float32) a_gpu = gpuarray.to_gpu(a.T) t = datetime.now() U, s, Vt = rlinalg.rsvd(a_gpu, k=50, method='standard') print("GPU Time:") print(datetime.now() - t) print(U.shape, s.shape, Vt.shape) X = a.T pca = RandomizedPCA(n_components=50) t = datetime.now() pca.fit(X) print("CPU Time:") print(datetime.now() - t) print(pca.explained_variance_ratio_)
import pycuda.gpuarray as gpuarray import pycuda.autoinit import numpy as np from skcuda import linalg, rlinalg import sys import timeit from datetime import datetime from sklearn.decomposition import RandomizedPCA linalg.init() rlinalg.init() a = np.load(open('/if10/spk3rw/nytimesdata/matrix_'+str(sys.argv[1])+'_docs.bin')) a = a.astype(np.float32) a_gpu = gpuarray.to_gpu(a.T) t = datetime.now() U, s, Vt = rlinalg.rsvd(a_gpu, k=50, method='standard') print("GPU Time:") print(datetime.now()-t) print(U.shape,s.shape,Vt.shape) X = a.T pca = RandomizedPCA(n_components=50) t = datetime.now() pca.fit(X) print("CPU Time:") print(datetime.now()-t) print(pca.explained_variance_ratio_)