if __name__ == '__main__': # Calculate various skill metrics, writing results to screen # and Excel file. Use an ordered dictionary so skill metrics are # saved in the Excel file in the same order as written to screen. stats = OrderedDict() # Read data from pickle file data = load_obj('target_data') pred = data.pred1['data'] ref = data.ref['data'] # Get bias stats['bias'] = sm.bias(pred, ref) print('Bias = ' + str(stats['bias'])) # Get Root-Mean-Square-Deviation (RMSD) stats['rmsd'] = sm.rmsd(pred, ref) print('RMSD = ' + str(stats['rmsd'])) # Get Centered Root-Mean-Square-Deviation (CRMSD) stats['crmsd'] = sm.centered_rms_dev(pred, ref) print('CRMSD = ' + str(stats['crmsd'])) # Get Standard Deviation (SDEV) stats['sdev'] = np.std(pred) print('SDEV = ' + str(stats['sdev'])) # Get correlation coefficient (r)
plt.scatter(fechan, realn, color='black', label='Data') # datos iniciales plt.plot(fechan, testn, color='red', label='Modelo RBF') # RBF kernel plt.title('Tunal (Nov 22 y 23)') #plt.plot(fechas,svr_lin.predict(fechas), color= 'green', label= 'Modelo Lineal') # lineal kernel #plt.plot(fechas,svr_poly.predict(fechas), color= 'blue', label= 'Modelo Polinomial') # Polinomial kernel plt.xlabel('Horas') plt.ylabel('Concentracion de PM_25') plt.legend() plt.savefig('Tun_Nov_22-23.png') plt.show() plt.close() print('------ Febrero 14 y 15 de 2019 ------') print(np.corrcoef(real, test)) print(sm.rmsd(test, np.array(real))) print(sm.bias(test, np.array(real))) print('------ Noviembre 22 y 23 de 2018 ------') print(np.corrcoef(realn, testn)) print(sm.rmsd(testn, np.array(realn))) print(sm.bias(testn, np.array(realn))) ##### Create files ## Feb soda = {'SVR_tun': test.tolist()} df = pd.DataFrame(soda, columns=['SVR_tun']) df.to_csv('tun_feb_svr.csv') ## Nov soda = {'SVR_tun': test.tolist()} df = pd.DataFrame(soda, columns=['SVR_tun'])