Пример #1
0
def normcut_segmentations(img):

    #labels1 = segmentation.slic(img, compactness=3, n_segments=50)
    labels1 = segmentation.slic(img,compactness=3,n_segments=20)
    out1 = color.label2rgb(labels1, img)#, kind='avg')
    #return labels1
    g = graph.rag_mean_color(img, labels1, mode='similarity')
    labels2 = graph.cut_normalized(labels1, g)
    out2 = color.label2rgb(labels2, img,image_alpha=0.2)#, kind='avg')
    return (labels1,labels2)
Пример #2
0
def test_cut_normalized():

    img = np.zeros((100, 100, 3), dtype='uint8')
    img[:50, :50] = 255, 255, 255
    img[:50, 50:] = 254, 254, 254
    img[50:, :50] = 2, 2, 2
    img[50:, 50:] = 1, 1, 1

    labels = np.zeros((100, 100), dtype='uint8')
    labels[:50, :50] = 0
    labels[:50, 50:] = 1
    labels[50:, :50] = 2
    labels[50:, 50:] = 3

    rag = graph.rag_mean_color(img, labels, mode='similarity')

    new_labels = graph.cut_normalized(labels, rag, in_place=False)
    new_labels, _, _ = segmentation.relabel_sequential(new_labels)
    # Two labels
    assert new_labels.max() == 1

    new_labels = graph.cut_normalized(labels, rag)
    new_labels, _, _ = segmentation.relabel_sequential(new_labels)
    assert new_labels.max() == 1
Пример #3
0
def test_cut_normalized():

    img = np.zeros((100, 100, 3), dtype='uint8')
    img[:50, :50] = 255, 255, 255
    img[:50, 50:] = 254, 254, 254
    img[50:, :50] = 2, 2, 2
    img[50:, 50:] = 1, 1, 1

    labels = np.zeros((100, 100), dtype='uint8')
    labels[:50, :50] = 0
    labels[:50, 50:] = 1
    labels[50:, :50] = 2
    labels[50:, 50:] = 3

    rag = graph.rag_mean_color(img, labels, mode='similarity')

    new_labels = graph.cut_normalized(labels, rag, in_place=False)
    new_labels, _, _ = segmentation.relabel_sequential(new_labels)
    # Two labels
    assert new_labels.max() == 1

    new_labels = graph.cut_normalized(labels, rag)
    new_labels, _, _ = segmentation.relabel_sequential(new_labels)
    assert new_labels.max() == 1
Пример #4
0
Normalized Cut
==============

This example constructs a Region Adjacency Graph (RAG) and recursively performs
a Normalized Cut on it.

References
----------
.. [1] Shi, J.; Malik, J., "Normalized cuts and image segmentation",
       Pattern Analysis and Machine Intelligence,
       IEEE Transactions on, vol. 22, no. 8, pp. 888-905, August 2000.
"""
from skimage import graph, data, io, segmentation, color
from matplotlib import pyplot as plt


img = data.coffee()

labels1 = segmentation.slic(img, compactness=30, n_segments=400)
out1 = color.label2rgb(labels1, img, kind='avg')

g = graph.rag_mean_color(img, labels1, mode='similarity')
labels2 = graph.cut_normalized(labels1, g)
out2 = color.label2rgb(labels2, img, kind='avg')

plt.figure()
io.imshow(out1)
plt.figure()
io.imshow(out2)
io.show()