Пример #1
0
def test_knn_sanity_slow():
    if not have_flann:
        raise SkipTest("No flann, so skipping knn tests.")

    dim = 3
    n = 20
    np.random.seed(47)
    bags = Features(
        [np.random.randn(np.random.randint(30, 100), dim) for _ in xrange(n)])

    # just make sure it runs
    div_funcs = ('kl', 'js', 'renyi:.9', 'l2', 'tsallis:.8')
    Ks = (3, 4)
    est = KNNDivergenceEstimator(div_funcs=div_funcs, Ks=Ks)
    res = est.fit_transform(bags)
    assert res.shape == (len(div_funcs), len(Ks), n, n)
    assert np.all(np.isfinite(res))

    # test that JS blows up when there's a huge difference in bag sizes
    # (so that K is too low)
    assert_raises(
        ValueError,
        partial(est.fit_transform, bags + [np.random.randn(1000, dim)]))

    # test fit() and then transform() with JS, with different-sized test bags
    est = KNNDivergenceEstimator(div_funcs=('js', ), Ks=(5, ))
    est.fit(bags, get_rhos=True)
    with LogCapture('skl_groups.divergences.knn', level=logging.WARNING) as l:
        res = est.transform([np.random.randn(300, dim)])
        assert res.shape == (1, 1, 1, len(bags))
        assert len(l.records) == 1
        assert l.records[0].message.startswith('Y_rhos had a lower max_K')

    # test that passing div func more than once raises
    def blah(df):
        est = KNNDivergenceEstimator(div_funcs=[df, df])
        return est.fit(bags)

    assert_raises(ValueError, lambda: blah('kl'))
    assert_raises(ValueError, lambda: blah('renyi:.8'))
    assert_raises(ValueError, lambda: blah('l2'))
Пример #2
0
def test_knn_sanity_slow():
    if not have_flann:
        raise SkipTest("No flann, so skipping knn tests.")

    dim = 3
    n = 20
    np.random.seed(47)
    bags = Features([np.random.randn(np.random.randint(30, 100), dim)
                     for _ in xrange(n)])

    # just make sure it runs
    div_funcs = ('kl', 'js', 'renyi:.9', 'l2', 'tsallis:.8')
    Ks = (3, 4)
    est = KNNDivergenceEstimator(div_funcs=div_funcs, Ks=Ks)
    res = est.fit_transform(bags)
    assert res.shape == (len(div_funcs), len(Ks), n, n)
    assert np.all(np.isfinite(res))

    # test that JS blows up when there's a huge difference in bag sizes
    # (so that K is too low)
    assert_raises(
        ValueError,
        partial(est.fit_transform, bags + [np.random.randn(1000, dim)]))

    # test fit() and then transform() with JS, with different-sized test bags
    est = KNNDivergenceEstimator(div_funcs=('js',), Ks=(5,))
    est.fit(bags, get_rhos=True)
    with LogCapture('skl_groups.divergences.knn', level=logging.WARNING) as l:
        res = est.transform([np.random.randn(300, dim)])
        assert res.shape == (1, 1, 1, len(bags))
        assert len(l.records) == 1
        assert l.records[0].message.startswith('Y_rhos had a lower max_K')

    # test that passing div func more than once raises
    def blah(df):
        est = KNNDivergenceEstimator(div_funcs=[df, df])
        return est.fit(bags)
    assert_raises(ValueError, lambda: blah('kl'))
    assert_raises(ValueError, lambda: blah('renyi:.8'))
    assert_raises(ValueError, lambda: blah('l2'))
Пример #3
0
def distribution_divergence(X_s, X_l, k=10):
    """
    This function computes l2 and js divergences from samples of two distributions.
    The implementation use `skl-groups`, which implements non-parametric estimation
    of divergences.

    Args:
        + X_s: a numpy array containing point cloud in state space
        + X_e: a numpy array containing point cloud in latent space
    """

    # We discard cases with too large dimensions
    if X_s.shape[1] > 50:
        return {'l2_divergence': -1., 'js_divergence': -1.}

    # We instantiate the divergence object
    div = KNNDivergenceEstimator(div_funcs=['l2', 'js'],
                                 Ks=[k],
                                 n_jobs=4,
                                 clamp=True)

    # We turn both data to float32
    X_s = X_s.astype(np.float32)
    X_l = X_l.astype(np.float32)

    # We generate Features
    f_s = Features(X_s, n_pts=[X_s.shape[0]])
    f_l = Features(X_l, n_pts=[X_l.shape[0]])

    # We create the knn graph
    div.fit(X=f_s)

    # We compute the divergences
    l2, js = div.transform(X=f_l).squeeze()

    # We construct the returned dictionnary
    output = {'l2_divergence': l2, 'js_divergence': js}

    return output
Пример #4
0
def test_knn_js():
    if not have_flann:
        raise SkipTest("No flann, so skipping knn tests.")

    # verified by hand
    x = np.reshape([0., 1, 3, 6], (4, 1))
    n = 4

    y = np.reshape([.2, 1.2, 3.2, 6.2, 10.2], (5, 1))
    m = 5

    M = 2

    right_js = (
        np.log(n + m - 1) + psi(M)
        + 1/(2*n) * (  # x weight is 1/7, y weight is 4/35, quantile 1/4
            np.log(.2) - psi(1)     # 0 => .2(y), 1(x)
            + np.log(.8) - psi(2)   # 1 => 1.2(y), .2(y)
            + np.log(1.8) - psi(2)  # 3 => 3.2(y), 1.2(y)
            + np.log(2.8) - psi(2)  # 6 => 6.2(y), 3.2(y)
        )
        + 1/(2*m) * (  # x weight is 5/36, y weight is 1/9, quantile 1/4
            np.log(.2) - psi(1)     # .2 => 0(x)
            + np.log(1) - psi(2)    # 1.2 => 1(x), .2(y)
            + np.log(2) - psi(2)    # 3.2 => 3(x), 1.2(y)
            + np.log(3) - psi(2)    # 6.2 => 6(x), 3.2(y)
            + np.log(4.2) - psi(2)  # 10.2 => 6.2(y), 6(x)
        )
        - 1/2 * np.log(n-1) - 1/(2*n) * (
            np.log(3) + np.log(2) + np.log(3) + np.log(5))
        - 1/2 * np.log(m-1) - 1/(2*m) * (
            np.log(3) + np.log(2) + np.log(3) + np.log(4) + np.log(7))
    )

    msg = "got {}, expected {}"
    est = KNNDivergenceEstimator(div_funcs=['js'], Ks=[2], clamp=False)
    res = est.fit([x]).transform([y])
    assert res.shape == (1, 1, 1, 1)
    res = res[0, 0, 0, 0]
    assert np.allclose(res, right_js, atol=1e-6), msg.format(res, right_js)
Пример #5
0
def test_knn_js():
    if not have_flann:
        raise SkipTest("No flann, so skipping knn tests.")

    # verified by hand
    x = np.reshape([0., 1, 3, 6], (4, 1))
    n = 4

    y = np.reshape([.2, 1.2, 3.2, 6.2, 10.2], (5, 1))
    m = 5

    M = 2

    right_js = (
        np.log(n + m - 1) + psi(M) + 1 / (2 * n) *
        (  # x weight is 1/7, y weight is 4/35, quantile 1/4
            np.log(.2) - psi(1)  # 0 => .2(y), 1(x)
            + np.log(.8) - psi(2)  # 1 => 1.2(y), .2(y)
            + np.log(1.8) - psi(2)  # 3 => 3.2(y), 1.2(y)
            + np.log(2.8) - psi(2)  # 6 => 6.2(y), 3.2(y)
        ) + 1 / (2 * m) * (  # x weight is 5/36, y weight is 1/9, quantile 1/4
            np.log(.2) - psi(1)  # .2 => 0(x)
            + np.log(1) - psi(2)  # 1.2 => 1(x), .2(y)
            + np.log(2) - psi(2)  # 3.2 => 3(x), 1.2(y)
            + np.log(3) - psi(2)  # 6.2 => 6(x), 3.2(y)
            + np.log(4.2) - psi(2)  # 10.2 => 6.2(y), 6(x)
        ) - 1 / 2 * np.log(n - 1) - 1 / (2 * n) *
        (np.log(3) + np.log(2) + np.log(3) + np.log(5)) -
        1 / 2 * np.log(m - 1) - 1 / (2 * m) *
        (np.log(3) + np.log(2) + np.log(3) + np.log(4) + np.log(7)))

    msg = "got {}, expected {}"
    est = KNNDivergenceEstimator(div_funcs=['js'], Ks=[2], clamp=False)
    res = est.fit([x]).transform([y])
    assert res.shape == (1, 1, 1, 1)
    res = res[0, 0, 0, 0]
    assert np.allclose(res, right_js, atol=1e-6), msg.format(res, right_js)
Пример #6
0
 def blah(df):
     est = KNNDivergenceEstimator(div_funcs=[df, df])
     return est.fit(bags)
Пример #7
0
 def blah(df):
     est = KNNDivergenceEstimator(div_funcs=[df, df])
     return est.fit(bags)