Пример #1
0
def _yield_all_checks(name, estimator):
    for check in _yield_non_meta_checks(name, estimator):
        yield check
    if is_classifier(estimator):
        for check in _yield_classifier_checks(name, estimator):
            yield check
    if is_regressor(estimator):
        for check in _yield_regressor_checks(name, estimator):
            yield check
    if hasattr(estimator, 'transform'):
        for check in _yield_transformer_checks(name, estimator):
            yield check
    if isinstance(estimator, ClusterMixin):
        for check in _yield_clustering_checks(name, estimator):
            yield check
    if is_outlier_detector(estimator):
        for check in _yield_outliers_checks(name, estimator):
            yield check
    yield check_fit2d_predict1d
    yield check_methods_subset_invariance
    yield check_fit2d_1sample
    yield check_fit2d_1feature
    yield check_fit1d
    yield check_get_params_invariance
    yield check_set_params
    yield check_dict_unchanged
    yield check_dont_overwrite_parameters
Пример #2
0
def yield_all_checks(name, estimator):
    tags = estimator._get_tags()
    if "2darray" not in tags["X_types"]:
        warnings.warn("Can't test estimator {} which requires input "
                      " of type {}".format(name, tags["X_types"]),
                      SkipTestWarning)
        return
    if tags["_skip_test"]:
        warnings.warn("Explicit SKIP via _skip_test tag for estimator "
                      "{}.".format(name),
                      SkipTestWarning)
        return

    yield from _yield_checks(name, estimator)
    if is_classifier(estimator):
        yield from _yield_classifier_checks(name, estimator)
    if is_regressor(estimator):
        yield from _yield_regressor_checks(name, estimator)
    if hasattr(estimator, 'transform'):
        if not tags["allow_variable_length"]:
            # Transformer tests ensure that shapes are the same at fit and
            # transform time, hence we need to skip them for estimators that
            # allow variable-length inputs
            yield from _yield_transformer_checks(name, estimator)
    if isinstance(estimator, ClusterMixin):
        yield from _yield_clustering_checks(name, estimator)
    if is_outlier_detector(estimator):
        yield from _yield_outliers_checks(name, estimator)
    # We are not strict on presence/absence of the 3rd dimension
    # yield check_fit2d_predict1d

    if not tags["non_deterministic"]:
        yield check_methods_subset_invariance

    yield check_fit2d_1sample
    yield check_fit2d_1feature
    yield check_fit1d
    yield check_get_params_invariance
    yield check_set_params
    yield check_dict_unchanged
    yield check_dont_overwrite_parameters
    yield check_fit_idempotent

    if (is_classifier(estimator) or
            is_regressor(estimator) or
            isinstance(estimator, ClusterMixin)):
        if tags["allow_variable_length"]:
            yield check_different_length_fit_predict_transform
Пример #3
0
def yield_all_checks(name, estimator):
    tags = _safe_tags(estimator)
    if "2darray" not in tags["X_types"]:
        warnings.warn(
            "Can't test estimator {} which requires input "
            " of type {}".format(name, tags["X_types"]), SkipTestWarning)
        return
    if tags["_skip_test"]:
        warnings.warn(
            "Explicit SKIP via _skip_test tag for estimator "
            "{}.".format(name), SkipTestWarning)
        return

    for check in _yield_checks(name, estimator):
        yield check
    if is_classifier(estimator):
        for check in _yield_classifier_checks(name, estimator):
            yield check
    if is_regressor(estimator):
        for check in _yield_regressor_checks(name, estimator):
            yield check
    if hasattr(estimator, 'transform'):
        for check in _yield_transformer_checks(name, estimator):
            yield check
    if isinstance(estimator, ClusterMixin):
        for check in _yield_clustering_checks(name, estimator):
            yield check
    if is_outlier_detector(estimator):
        for check in _yield_outliers_checks(name, estimator):
            yield check
    yield check_fit2d_predict1d

    if not tags["non_deterministic"]:
        yield check_methods_subset_invariance

    yield check_fit2d_1sample
    yield check_fit2d_1feature
    yield check_fit1d
    yield check_get_params_invariance
    yield check_set_params
    yield check_dict_unchanged
    yield check_dont_overwrite_parameters
    yield check_fit_idempotent