Пример #1
0
def test_select_fwe_classif():
    """
    Test whether the relative univariate feature selection
    gets the correct items in a simple classification problem
    with the fpr heuristic
    """
    X, Y = make_classification(n_samples=200,
                               n_features=20,
                               n_informative=3,
                               n_redundant=2,
                               n_repeated=0,
                               n_classes=8,
                               n_clusters_per_class=1,
                               flip_y=0.0,
                               class_sep=10,
                               shuffle=False,
                               random_state=0)

    univariate_filter = SelectFwe(f_classif, alpha=0.01)
    X_r = univariate_filter.fit(X, Y).transform(X)
    X_r2 = GenericUnivariateSelect(f_classif, mode='fwe',
                                   param=0.01).fit(X, Y).transform(X)
    assert_array_equal(X_r, X_r2)
    support = univariate_filter.get_support()
    gtruth = np.zeros(20)
    gtruth[:5] = 1
    assert (np.sum(np.abs(support - gtruth)) < 2)
Пример #2
0
def test_select_percentile_regression_full():
    """
    Test whether the relative univariate feature selection
    selects all features when '100%' is asked.
    """
    X, Y = make_regression(n_samples=200, n_features=20,
                           n_informative=5, shuffle=False, random_state=0)

    univariate_filter = SelectPercentile(f_regression, percentile=100)
    X_r = univariate_filter.fit(X, Y).transform(X)
    X_r2 = GenericUnivariateSelect(f_regression, mode='percentile',
                    param=100).fit(X, Y).transform(X)
    assert_array_equal(X_r, X_r2)
    support = univariate_filter.get_support()
    gtruth = np.ones(20)
    assert_array_equal(support, gtruth)
Пример #3
0
def test_select_fdr_regression():
    """
    Test whether the relative univariate feature selection
    gets the correct items in a simple regression problem
    with the fdr heuristic
    """
    X, Y = make_regression(n_samples=200, n_features=20,
                           n_informative=5, shuffle=False, random_state=0)

    univariate_filter = SelectFdr(f_regression, alpha=0.01)
    X_r = univariate_filter.fit(X, Y).transform(X)
    X_r2 = GenericUnivariateSelect(f_regression, mode='fdr',
                    param=0.01).fit(X, Y).transform(X)
    assert_array_equal(X_r, X_r2)
    support = univariate_filter.get_support()
    gtruth = np.zeros(20)
    gtruth[:5] = 1
    assert_array_equal(support, gtruth)
Пример #4
0
def test_select_percentile_regression():
    """
    Test whether the relative univariate feature selection
    gets the correct items in a simple regression problem
    with the percentile heuristic
    """
    X, Y = make_regression(n_samples=200, n_features=20,
                           n_informative=5, shuffle=False, random_state=0)

    univariate_filter = SelectPercentile(f_regression, percentile=25)
    X_r = univariate_filter.fit(X, Y).transform(X)
    X_r2 = GenericUnivariateSelect(f_regression, mode='percentile',
                    param=25).fit(X, Y).transform(X)
    assert_array_equal(X_r, X_r2)
    support = univariate_filter.get_support()
    gtruth = np.zeros(20)
    gtruth[:5] = 1
    assert_array_equal(support, gtruth)
    X_2 = X.copy()
    X_2[:, np.logical_not(support)] = 0
    assert_array_equal(X_2, univariate_filter.inverse_transform(X_r))
Пример #5
0
			'ExtraTreeClassifier':ExtraTreeClassifier(),
			'ExtraTreeRegressor':ExtraTreeRegressor(),
			'ExtraTreesClassifier':ExtraTreesClassifier(),
			'ExtraTreesRegressor':ExtraTreesRegressor(),
			'FactorAnalysis':FactorAnalysis(),
			'FastICA':FastICA(),
			'FeatureAgglomeration':FeatureAgglomeration(),
			'FunctionTransformer':FunctionTransformer(),
			'GMM':GMM(),
			'GaussianMixture':GaussianMixture(),
			'GaussianNB':GaussianNB(),
			'GaussianProcess':GaussianProcess(),
			'GaussianProcessClassifier':GaussianProcessClassifier(),
			'GaussianProcessRegressor':GaussianProcessRegressor(),
			'GaussianRandomProjection':GaussianRandomProjection(),
			'GenericUnivariateSelect':GenericUnivariateSelect(),
			'GradientBoostingClassifier':GradientBoostingClassifier(),
			'GradientBoostingRegressor':GradientBoostingRegressor(),
			'GraphLasso':GraphLasso(),
			'GraphLassoCV':GraphLassoCV(),
			'HuberRegressor':HuberRegressor(),
			'Imputer':Imputer(),
			'IncrementalPCA':IncrementalPCA(),
			'IsolationForest':IsolationForest(),
			'Isomap':Isomap(),
			'KMeans':KMeans(),
			'KNeighborsClassifier':KNeighborsClassifier(),
			'KNeighborsRegressor':KNeighborsRegressor(),
			'KernelCenterer':KernelCenterer(),
			'KernelDensity':KernelDensity(),
			'KernelPCA':KernelPCA(),