def __init__(self, estimator, param_grid, scoring=None, cv=4, refit=True, verbose=False, population_size=50, mutation_prob=0.10, tournament_size=3, generations_number=10, n_jobs=1, iid=True, pre_dispatch='2*n_jobs', error_score='raise', fit_params=None): super(EvolutionaryAlgorithmSearchCV, self).__init__(estimator, scoring, fit_params, n_jobs, iid, refit, cv, pre_dispatch, error_score) _check_param_grid(param_grid) self.param_grid = param_grid self.possible_params = list(ParameterGrid(self.param_grid)) self.individual_size = int(ceil(log(len(self.possible_params), 2))) self.population_size = population_size self.generations_number = generations_number self.best_estimator_ = None self.best_score_ = None self.best_params_ = None self._individual_evals = {} self.mutation_prob = mutation_prob self.tournament_size = tournament_size
def __init__(self, estimator, param_grid, scoring=None, loss_func=None, score_func=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs'): super(ExtendedGridSearchCV, self).__init__( estimator, scoring, loss_func, score_func, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch) self.param_grid = param_grid _check_param_grid(param_grid)
def __init__(self, estimator, param_grid, scoring=None, fit_params=None, iid=True, refit=True, cv=None, verbose=0): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, iid, refit, cv, verbose) self.param_grid = param_grid _check_param_grid(param_grid)
def __init__(self, estimator, param_grid=None, refit=True, cv=2, verbose=0): self.estimator = estimator _check_param_grid(param_grid) self.param_grid = param_grid self.refit = refit self.cv = cv self.verbose = verbose self.dataset = None
def __init__(self, sc, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.sc = sc self.param_grid = param_grid _check_param_grid(param_grid)
def __init__(self, estimator, param_grid, dataset_filenames=None, sync=True, scoring=None, loss_func=None, score_func=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs'): super(IPyGridSearchCV, self).__init__( estimator, scoring, loss_func, score_func, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch) self.param_grid = param_grid self.dataset_filenames = dataset_filenames self.sync = sync _check_param_grid(param_grid)
def __init__(self, estimator, param_grid, scoring=None, loss_func=None, score_func=None, fit_params=None, iid=True, refit=True, cv=None, verbose=0, client=None, return_train_scores=False, tmp_dir='.'): super(DistributedGridSearchCV, self).__init__( estimator, scoring=scoring, loss_func=loss_func, score_func=score_func, fit_params=fit_params, iid=iid, refit=refit, cv=cv, verbose=verbose, client=client, return_train_scores=return_train_scores, tmp_dir=tmp_dir) self.param_grid = param_grid _check_param_grid(param_grid)
def __init__(self, estimator, param_grid, profile='net', grid_parallel=True, scoring=None, loss_func=None, score_func=None, fit_params=None, n_jobs=-1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch) self.param_grid = param_grid self.profile = profile self.grid_parallel = grid_parallel grid_search._check_param_grid(param_grid)
def __init__(self, estimator, param_grid, scoring=None, fit_params=None, iid=True, refit=True, cv=None, verbose=0): super(GridSearchCV, self).__init__(estimator, scoring, fit_params, iid, refit, cv, verbose) self.param_grid = param_grid _check_param_grid(param_grid)
def __init__(self, estimator, param_grid, scoring=None, cv=None, inner_cv=None, profile=None): self.scoring = scoring self.estimator = estimator if isinstance(param_grid, Mapping): self.param_grid = [param_grid] else: self.param_grid = param_grid self.scoring = scoring self.cv = cv self.inner_cv = inner_cv self.profile = profile _check_param_grid(param_grid)
def fit(self, X, y): X, y = check_X_y(X, y, force_all_finite=False, multi_output=self.multi_output) _check_param_grid(self.param_grid) cv = _check_cv(self.cv, X, y, classifier=is_classifier(self.estimator)) self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) if comm_rank == 0: self._fit_master(X, y, cv) else: self._fit_slave() return self
def fit(self, X, y): if master: LOG.info("comm_size:" + str(comm_size)) X, y = check_X_y(X, y, force_all_finite=False, multi_output=self.multi_output, accept_sparse='csr') _check_param_grid(self.param_grid) cv = check_cv(self.cv, X, y, classifier=is_classifier(self.estimator)) if master: LOG.info("cv length:" + str(len(cv))) self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) if master: self._fit_master(X, y, cv) else: self._fit_slave() return self
def __init__(self, estimator, data_home, dataset, param_grid=None, refit=True, verbose=0, holdout=None, queue=None, scorer=None, fit_params=None, error_score='raise'): self.error_score = error_score if not scorer: scorer = estimator.score self.scorer = scorer self.dataset = dataset self.data_home = data_home self.estimator = estimator _check_param_grid(param_grid) self.param_grid = param_grid self.refit = refit self.verbose = verbose self.holdout = holdout if queue is None: queue = HTCondorQueue() self.queue = queue self.fit_params = fit_params
def __init__(self, estimator, param_grid, scoring=None, fit_params=None, iid=True, refit=True, cv=None, get=None): super(GridSearchCV, self).__init__(estimator=estimator, scoring=scoring, fit_params=fit_params, iid=iid, refit=refit, cv=cv, get=get) _check_param_grid(param_grid) self.param_grid = param_grid
def __init__(self, estimator, param_grid, scoring=None, cv=4, refit=True, verbose=False, population_size=50, mutation_prob=0.10, tournament_size=3, generations_number=10, n_jobs=1, iid=True, pre_dispatch='2*n_jobs', error_score='raise', fit_params=None): super(EvolutionaryAlgorithmSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, pre_dispatch, error_score) _check_param_grid(param_grid) self.param_grid = param_grid self.possible_params = list(ParameterGrid(self.param_grid)) self.individual_size = int(ceil(log(len(self.possible_params), 2))) self.population_size = population_size self.generations_number = generations_number self.best_estimator_ = None self.best_score_ = None self.best_params_ = None self._individual_evals = {} self.mutation_prob = mutation_prob self.tournament_size = tournament_size
def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_duplicates=1, n_splits=100, iid=True, refit=True, cv=None, verbose=0): self.param_grid = param_grid _check_param_grid(param_grid) self.n_duplicates = n_duplicates self.n_splits = n_splits super(FlyGridCV, self).__init__(estimator=estimator, scoring=scoring, fit_params=fit_params, iid=iid, refit=refit, cv=cv, verbose=verbose)
def __init__(self, param_grid, n_evaluations, random_state=None): """ The aim of this class is to generate new points, where the function (estimator) will be computed. :type param_grid: OrderedDict, the grid with parameters to optimize on :type n_evaluations: int, the number of evaluations to do :type random_state: int | RandomState | None """ assert isinstance(param_grid, dict), 'the passed param_grid should be of OrderedDict class' self.param_grid = OrderedDict(param_grid) _check_param_grid(self.param_grid) self.dimensions = list([len(param_values) for param, param_values in self.param_grid.items()]) size = numpy.prod(self.dimensions) assert size > 1, 'The space of parameters contains only %i points' % size if n_evaluations > size / 2: warn('The number of evaluations was decreased to %i' % (size // 2), UserWarning) n_evaluations = size // 2 self.n_evaluations = n_evaluations # results on different parameters self.grid_scores_ = OrderedDict() # all the tasks that are being computed or already computed self.queued_tasks_ = set() self.random_state = check_random_state(random_state) self.evaluations_done = 0