Пример #1
0
def test_missing_indicator(failure_logger, int_dataset,  # noqa: F811
                           missing_values, features):
    zero_filled, one_filled, nan_filled = int_dataset
    if missing_values == 0:
        X_np, X = zero_filled
    elif missing_values == 1:
        X_np, X = one_filled
    else:
        X_np, X = nan_filled

    indicator = cuMissingIndicator(missing_values=missing_values,
                                   features=features)
    ft_X = indicator.fit_transform(X)
    assert type(ft_X) == type(X)
    indicator.fit(X)
    t_X = indicator.transform(X)
    assert type(t_X) == type(X)

    indicator = skMissingIndicator(missing_values=missing_values,
                                   features=features)
    sk_ft_X = indicator.fit_transform(X_np)
    indicator.fit(X_np)
    sk_t_X = indicator.transform(X_np)

    assert_allclose(ft_X, sk_ft_X)
    assert_allclose(t_X, sk_t_X)
Пример #2
0
def test_missing_indicator_sparse(sparse_int_dataset,  # noqa: F811
                                  features):
    X_np, X = sparse_int_dataset

    indicator = cuMissingIndicator(features=features,
                                   missing_values=1)
    ft_X = indicator.fit_transform(X)
    # assert type(ft_X) == type(X)
    assert cp.sparse.issparse(ft_X) or scipy.sparse.issparse(ft_X)
    indicator.fit(X)
    t_X = indicator.transform(X)
    # assert type(t_X) == type(X)
    assert cp.sparse.issparse(t_X) or scipy.sparse.issparse(t_X)

    indicator = skMissingIndicator(features=features,
                                   missing_values=1)
    sk_ft_X = indicator.fit_transform(X_np)
    indicator.fit(X_np)
    sk_t_X = indicator.transform(X_np)

    assert_allclose(ft_X, sk_ft_X)
    assert_allclose(t_X, sk_t_X)