class LassoLarsICImpl(): def __init__(self, criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.220446049250313e-16, copy_X=True, positive=False): self._hyperparams = { 'criterion': criterion, 'fit_intercept': fit_intercept, 'verbose': verbose, 'normalize': normalize, 'precompute': precompute, 'max_iter': max_iter, 'eps': eps, 'copy_X': copy_X, 'positive': positive } self._wrapped_model = Op(**self._hyperparams) def fit(self, X, y=None): if (y is not None): self._wrapped_model.fit(X, y) else: self._wrapped_model.fit(X) return self def predict(self, X): return self._wrapped_model.predict(X)
def test_lasso_lars_fit_copyX_behaviour(copy_X): """ Test that user input to .fit for copy_X overrides default __init__ value """ lasso_lars = LassoLarsIC(precompute=False) rng = np.random.RandomState(0) X = rng.normal(0, 1, (100, 5)) X_copy = X.copy() y = X[:, 2] lasso_lars.fit(X, y, copy_X=copy_X) assert copy_X == np.array_equal(X, X_copy)
def test_lasso_lars_copyX_behaviour(copy_X): """ Test that user input regarding copy_X is not being overridden (it was until at least version 0.21) """ lasso_lars = LassoLarsIC(copy_X=copy_X, precompute=False) rng = np.random.RandomState(0) X = rng.normal(0, 1, (100, 5)) X_copy = X.copy() y = X[:, 2] lasso_lars.fit(X, y) assert copy_X == np.array_equal(X, X_copy)
def _make_estimator_and_params(self, X, y): assert self.precompute in (True, False, None, 'auto') alpha = self.alpha if isinstance(alpha, six.string_types) and alpha in ('aic', 'bic'): model = LassoLarsIC(precompute=self.precompute, criterion=self.alpha, max_iter=self.max_iter, eps=self.eps) model.fit(X, y) self.alpha_ = alpha = model.alpha_ return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter, eps=self.eps, precompute=self.precompute)
def fit(self, X, y=None): self._sklearn_model = SKLModel(**self._hyperparams) if (y is not None): self._sklearn_model.fit(X, y) else: self._sklearn_model.fit(X) return self
def connectWidgets(self): # LassoLARS ll = LassoLars() self.alpha_text.setText(str(ll.alpha)) self.fit_interceptCheckBox.setChecked(ll.fit_intercept) self.verboseCheckBox.setChecked(ll.verbose) self.normalizeCheckBox.setChecked(ll.normalize) self.setComboBox(self.precomputeComboBox, ['True', 'False', 'auto', 'array-like']) self.defaultComboItem(self.precomputeComboBox, ll.precompute) self.max_iterSpinBox.setValue(ll.max_iter) self.copy_XCheckBox.setChecked(ll.copy_X) self.fit_pathCheckBox.setChecked(ll.fit_path) self.positiveCheckBox.setChecked(ll.positive) # LassoLarsCV llcv = LassoLarsCV() self.max_n_alphasSpinBox.setValue(llcv.max_n_alphas) self.n_jobsSpinBox.setValue(llcv.n_jobs) # LassoLarsIC llic = LassoLarsIC() self.cvSpinBox.setValue(3) self.setComboBox(self.criterionComboBox, ['aic', 'bic']) self.defaultComboItem(self.criterionComboBox, llic.criterion)
def _make_estimator_and_params(self, X, y): alpha = self.alpha if isinstance(alpha, six.string_types) and alpha in ('aic', 'bic'): model = LassoLarsIC(precompute=self.precompute, criterion=self.alpha, max_iter=self.max_iter, eps=self.eps) model.fit(X, y) self.alpha_ = alpha = model.alpha_ precompute = self.precompute # A precomputed Gram array is useless, since _randomized_lasso # change X a each iteration if hasattr(precompute, '__array__'): precompute = 'auto' assert precompute in (True, False, None, 'auto') return _randomized_lasso, dict(alpha=alpha, max_iter=self.max_iter, eps=self.eps, precompute=precompute)
def function(self): model = self.modelComboBox.currentIndex() if model == 0: params = { 'alpha': self.alpha_text.text(), 'fit_intercept': self.fit_interceptCheckBox.isChecked(), 'verbose': self.fit_interceptCheckBox.isChecked(), 'normalize': self.normalizeCheckBox.isChecked(), 'precompute': self.precomputeComboBox.currentText(), 'max_iter': self.max_iterSpinBox.value(), 'copy_X': self.copy_XCheckBox.isChecked(), 'fit_path': self.fit_pathCheckBox.isChecked(), 'positive': self.positiveCheckBox.isChecked(), 'model': model } params_check = dict(params) params_check.pop('model') return params, self.getChangedValues(params_check, LassoLars()) elif model == 1: params = { 'fit_intercept': self.fit_interceptCheckBox.isChecked(), 'verbose': self.fit_interceptCheckBox.isChecked(), 'max_iter': self.max_iterSpinBox.value(), 'normalize': self.normalizeCheckBox.isChecked(), 'precompute': self.precomputeComboBox.currentText(), 'cv': self.cvSpinBox.value(), 'max_n_alphas': self.max_n_alphasSpinBox.value(), 'n_jobs': self.n_jobsSpinBox.value(), 'copy_X': self.copy_XCheckBox.isChecked(), 'positive': self.positiveCheckBox.isChecked(), 'model': model } params_check = dict(params) params_check.pop('model') return params, self.getChangedValues(params_check, LassoLarsCV()) elif model == 2: params = { 'criterion': self.criterionComboBox.currentText(), 'fit_intercept': self.fit_interceptCheckBox.isChecked(), 'verbose': self.fit_interceptCheckBox.isChecked(), 'normalize': self.normalizeCheckBox.isChecked(), 'precompute': self.precomputeComboBox.currentText(), 'max_iter': self.max_iterSpinBox.value(), 'copy_X': self.copy_XCheckBox.isChecked(), 'positive': self.positiveCheckBox.isChecked(), 'model': model } params_check = dict(params) params_check.pop('model') return params, self.getChangedValues(params_check, LassoLarsIC()) else: params = {} print("Error")
def __init__(self, criterion='aic', fit_intercept=True, verbose=False, normalize=True, precompute='auto', max_iter=500, eps=2.220446049250313e-16, copy_X=True, positive=False): self._hyperparams = { 'criterion': criterion, 'fit_intercept': fit_intercept, 'verbose': verbose, 'normalize': normalize, 'precompute': precompute, 'max_iter': max_iter, 'eps': eps, 'copy_X': copy_X, 'positive': positive} self._wrapped_model = SKLModel(**self._hyperparams)
'KNeighborsClassifier':KNeighborsClassifier(), 'KNeighborsRegressor':KNeighborsRegressor(), 'KernelCenterer':KernelCenterer(), 'KernelDensity':KernelDensity(), 'KernelPCA':KernelPCA(), 'KernelRidge':KernelRidge(), 'LSHForest':LSHForest(), 'LabelPropagation':LabelPropagation(), 'LabelSpreading':LabelSpreading(), 'Lars':Lars(), 'LarsCV':LarsCV(), 'Lasso':Lasso(), 'LassoCV':LassoCV(), 'LassoLars':LassoLars(), 'LassoLarsCV':LassoLarsCV(), 'LassoLarsIC':LassoLarsIC(), 'LatentDirichletAllocation':LatentDirichletAllocation(), 'LedoitWolf':LedoitWolf(), 'LinearDiscriminantAnalysis':LinearDiscriminantAnalysis(), 'LinearRegression':LinearRegression(), 'LinearSVC':LinearSVC(), 'LinearSVR':LinearSVR(), 'LocallyLinearEmbedding':LocallyLinearEmbedding(), 'LogisticRegression':LogisticRegression(), 'LogisticRegressionCV':LogisticRegressionCV(), 'MDS':MDS(), 'MLPClassifier':MLPClassifier(), 'MLPRegressor':MLPRegressor(), 'MaxAbsScaler':MaxAbsScaler(), 'MeanShift':MeanShift(), 'MinCovDet':MinCovDet(),