def predict_features(self, df_features, df_target, idx=0, **kwargs):
        """For one variable, predict its neighbouring nodes.

        Args:
            df_features (pandas.DataFrame):
            df_target (pandas.Series):
            idx (int): (optional) for printing purposes
            kwargs (dict): additional options for algorithms

        Returns:
            list: scores of each feature relatively to the target
        """
        X = df_features.values
        y = df_target.values
        clf = ard(compute_score=True)
        clf.fit(X, y.ravel())

        return np.abs(clf.coef_)
Пример #2
0
           model.__class__.__name__


if __name__ == "__main__":
    br = '\n'
    X = np.load('data/X_boston.npy')
    y = np.load('data/y_boston.npy')
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    regressors = [
        lr(),
        bay(),
        rr(alpha=.5, random_state=0),
        l(alpha=0.1, random_state=0),
        ll(),
        knn(),
        ard(),
        rfr(random_state=0, n_estimators=100),
        SVR(gamma='scale', kernel='rbf'),
        rcv(fit_intercept=False),
        en(random_state=0),
        dtr(random_state=0),
        ada(random_state=0),
        gbr(random_state=0)
    ]
    print('unscaled:', br)
    for reg in regressors:
        reg.fit(X_train, y_train)
        rmse, name = get_error(reg, X_test, y_test)
        name = reg.__class__.__name__
        print(name + '(rmse):', end=' ')
        print(rmse)