Пример #1
0
def make_lasso_cv():

	lasso = Lasso(random_state=0)

	#X=StandardScaler().fit_transform(all_training_data)
	X=all_training_data
	y=train_labels
	scores = list()
	scores_std = list()

	n_folds = 3

	for alpha in alphas:
		lasso.alpha = alpha
		this_scores = cross_val_score(lasso, X, y, cv=n_folds, n_jobs=1)
		scores.append(np.mean(this_scores))
		scores_std.append(np.std(this_scores))
		clf = Lasso(random_state=0)
		clf.alpha = alpha
		clf.fit(X,y)
		print(clf.coef_)
		make_prediction(clf, all_training_data, train_labels)

	scores, scores_std = np.array(scores), np.array(scores_std)

	plt.figure().set_size_inches(8, 6)
	plt.semilogx(alphas, scores)

	# plot error lines showing +/- std. errors of the scores
	std_error = scores_std / np.sqrt(n_folds)

	plt.semilogx(alphas, scores + std_error, 'b--')
	plt.semilogx(alphas, scores - std_error, 'b--')

	# alpha=0.2 controls the translucency of the fill color
	plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2)

	plt.ylabel('CV score +/- std error')
	plt.xlabel('alpha')
	plt.axhline(np.max(scores), linestyle='--', color='.5')
	print(scores.argmax(axis=0))
	plt.xlim([alphas[0], alphas[-1]])

	#TRAIN STATISTICS
	#[  5.78095079e-08   0.00000000e+00  -6.66919151e-10   0.00000000e+00
  	#-1.46713844e-04]
	#R2 score: 0.000554848134686
	#Mean square error for model: 0.000379071509183

	#TEST STATISTICS
	#[  8.66518676e-08   0.00000000e+00  -5.82401268e-10   0.00000000e+00
  	#-1.04665831e-04]
			#R2 score: -0.00600409234752
		#Mean square error for model: 0.000360113552396

	plt.show()
Пример #2
0
def compare(X, y, ringe_alpha, lasso_alpha, k, plot):
    kf = KFold(n_splits=10)
    kf.get_n_splits(X)
    knn_errors = []
    ridge_errors = []
    lasso_errors = []
    for train_index, test_index in kf.split(X):
        X_train, X_test = X.iloc[train_index], X.iloc[test_index]
        y_train, y_test = y.iloc[train_index], y.iloc[test_index]

        knn = KNeighborsClassifier(n_neighbors=k)
        knn.fit(X_train, y_train)
        pred_y = knn.predict(X_test)
        knn_errors.append(mean_squared_error(y_true=y_test, y_pred=pred_y))

        lasso = Lasso(normalize=True)
        lasso.alpha = lasso_alpha
        lasso.fit(X_train, y_train)
        pred_y = lasso.predict(X_test)
        lasso_errors.append(mean_squared_error(y_true=y_test, y_pred=pred_y))

        ridge = Ridge(normalize=True)
        ridge.alpha = ringe_alpha
        ridge.fit(X_train, y_train)
        pred_y = ridge.predict(X_test)
        ridge_errors.append(mean_squared_error(y_true=y_test, y_pred=pred_y))

    if plot:
        plt.plot([0, 1, 2], [np.mean(knn_errors), np.mean(ridge_errors), np.mean(lasso_errors)], 'ro')
        plt.title("Comparison")
        plt.xlabel('models (knn - 0, ridge - 2, lasso - 3)')
        plt.ylabel('MSE')
        # plt.xscale('log')
        plt.show()
    return np.mean(knn_errors), np.mean(ridge_errors), np.mean(lasso_errors)
Пример #3
0
def process_optimized_lasso(data):
    c_alpha = 0.001
    step = 0.01
    max_alpha = 20
    min_mean_sqr_error = 10000000
    max_r2_score = 0
    global optimized_lasso_alpha
    while c_alpha <= max_alpha:
        model = Lasso()
        model.alpha = c_alpha
        model.fit(data["X_train"], data["y_train"])
        predicted_values = model.predict(data["X_test"])
        mean_sqr_error = mean_squared_error(data["y_test"], predicted_values)
        r2_score_calc = r2_score(data["y_test"], predicted_values)
        if max_r2_score < abs(r2_score_calc):
            min_mean_sqr_error = mean_sqr_error
            max_r2_score = r2_score_calc
            optimized_lasso_alpha = c_alpha
        c_alpha = c_alpha + step
    return {
        "name": "LASSO",
        "data": {
            "alpha": optimized_lasso_alpha
        },
        "mean_sqr_err": min_mean_sqr_error,
        "r2_score": max_r2_score
    }
Пример #4
0
def RunLinearRegression(X, Y, X_test):
    from sklearn.linear_model import LinearRegression, Lasso
    # model = LinearRegression()
    alphas = np.logspace(-4, -1, 6)
    model = Lasso().set_params(alpha=alphas)
    scores = [
        model.set_params(alpha=alpha).fit(X, Y).score(X, Y) for alpha in alphas
    ]
    best_alpha = alphas[scores.index(max(scores))]
    model.alpha = best_alpha
    model.fit(X, Y)
    print("Training score: ", model.score(X, Y) * 100, "%")
    runCrossValidation(model, X, Y, X_test)
    Y_test = model.predict(X_test)
    return Y_test, 'linear_regression'
Пример #5
0
def process_optimized_lasso_step2(data):
    model = Lasso()
    model.alpha = optimized_lasso_alpha
    model.fit(data["X_train"], data["y_train"])
    predicted_values = model.predict(data["X_test"])
    mean_sqr_error = mean_squared_error(data["y_test"], predicted_values)
    r2_score_calc = r2_score(data["y_test"], predicted_values)
    return {
        "name": "LASSO",
        "data": {
            "alpha": optimized_lasso_alpha
        },
        "mean_sqr_err": mean_sqr_error,
        "r2_score": r2_score_calc
    }
def graphGen(n_folds):
    start_time = time.time()
    dataaa = datasets.load_boston(
    )  #BOSTON HOUSE PRICES FROM THE INSTITUTE OF ()
    #OR USE THIS FOR DIABETES DATA
    #dataaa = datasets.load_diabetes()

    X = dataaa.data[:150]
    y = dataaa.target[:150]

    lasso = Lasso(random_state=0)
    allAlphas = np.logspace(-4, -0.5, 30)

    scores = list()
    stdrdScores = list()

    for alpha in allAlphas:
        lasso.alpha = alpha
        this_scores = cross_val_score(lasso, X, y, cv=n_folds, n_jobs=1)
        scores.append(np.mean(this_scores))
        stdrdScores.append(np.std(this_scores))

    scores, stdrdScores = np.array(scores), np.array(stdrdScores)

    plt.figure().set_size_inches(8, 6)
    plt.semilogx(allAlphas, scores)

    standarderror = stdrdScores / np.sqrt(n_folds)

    plt.semilogx(allAlphas, scores + standarderror, 'b--')
    plt.semilogx(allAlphas, scores - standarderror, 'b--')

    plt.fill_between(allAlphas,
                     scores + standarderror,
                     scores - standarderror,
                     alpha=0.2,
                     color='red')

    plt.ylabel(
        'Score +- standard error, which ideally approaches 0 and doesnt deviate away from 0 as alpha does.'
    )
    plt.xlabel('alpha')
    plt.axhline(np.max(scores), linestyle='--', color='.8')
    plt.xlim([allAlphas[0], allAlphas[-1]])
    plt.savefig(str(n_folds) + ".png")

    print(str(n_folds) + " takes " + (time.time() - start_time))
Пример #7
0
def calc_lasso(X, y, alphas, plot):
    kf = KFold(n_splits=10)
    kf.get_n_splits(X)
    mses = []
    for alpha in alphas:
        errors = []
        for train_index, test_index in kf.split(X):
            X_train, X_test = X.iloc[train_index], X.iloc[test_index]
            y_train, y_test = y.iloc[train_index], y.iloc[test_index]
            lasso = Lasso(normalize=True)
            lasso.alpha = alpha
            lasso.fit(X_train, y_train)
            pred_y = lasso.predict(X_test)
            errors.append(mean_squared_error(y_true=y_test, y_pred=pred_y))
        mses.append(np.mean(errors))
    if plot:
        plt.plot(alphas, mses, 'ro')
        plt.title("MSE for different alpha levels for Lasso Regression")
        plt.xlabel('alpha')
        plt.ylabel('MSE')
        plt.xscale('log')
        plt.show()
    return mses
Пример #8
0

poly = PolynomialFeatures(degree=10)
modified_xTrain = poly.fit_transform(xTrain)
modified_xTest = poly.fit_transform(xTest)

train_err = []
test_err = []
lamda_vals = []
reg_weights = []
reg = Lasso(normalize=True)

for i in range(1, 11, 1):
    lamda = i * 0.01
    lamda_vals.append(lamda)
    reg.alpha = lamda #, tol=0.00000001, max_iter=10000)
    reg.fit(modified_xTrain, yTrain)
    reg_weights.append(reg.coef_)
    train_error = math.sqrt(mean_squared_error(yTrain, reg.predict(modified_xTrain)))
    test_error = math.sqrt(mean_squared_error(yTest, reg.predict(modified_xTest)))
    #print('For lamda=',lamda,': train_error=', train_error)
    #print('For lamda=',lamda,': test_error=', test_error)
    train_err.append(math.sqrt(mean_squared_error(yTrain, reg.predict(modified_xTrain))))
    test_err.append(math.sqrt(mean_squared_error(yTest, reg.predict(modified_xTest)))) 


# In[46]:


plt.title('Lasso Regression: RMSE vs Lamda')
plt.xlabel('Lamda')
Пример #9
0
from sklearn.model_selection import cross_val_score

diabetes = datasets.load_diabetes()
X = diabetes.data[:150]
y = diabetes.target[:150]

lasso = Lasso(random_state=0)
alphas = np.logspace(-4,-0.5,30)

scores = list()
scores_std =list()

n_folds=3

for alpha in alphas:
    lasso.alpha = alpha
    this_scores = cross_val_score(lasso,X,y,cv=n_folds,n_jobs=1)
    scores.append(np.mean(this_scores))
    scores_std.append(np.std(this_scores))

scores,scores_std = np.array(scores),np.array(scores_std)

#plot goes following
plt.figure().set_size_inches(8,6)
plt.semilogx(alphas,scores)

std_error = scores_std/np.sqrt(n_folds)

plt.semilogx(alphas,scores+std_error,'b--')
plt.semilogx(alphas,scores-std_error,'b--')
Пример #10
0
def channel_selection(inputs, module, sparsity=0.5, method='greedy'):
    """
    현재 모듈의 입력 채널중, 중요도가 높은 채널을 선택합니다.
    기존의 output을 가장 근접하게 만들어낼 수 있는 입력 채널을 찾아냅니댜.
    :param inputs: torch.Tensor, input features map
    :param module: torch.nn.module, layer
    :param sparsity: float, 0 ~ 1 how many prune channel of output of this layer
    :param method: str, how to select the channel
    :return:
        list of int, indices of channel to be selected and pruned
    """
    num_channel = inputs.size(1)  # 채널 수
    num_pruned = int(math.floor(num_channel *
                                sparsity))  # 입력된 sparsity 에 맞춰 삭제되어야 하는 채널 수

    if method == 'greedy':
        indices_pruned = []
        while len(indices_pruned) < num_pruned:
            min_diff = 1e10
            min_idx = 0
            for idx in range(num_channel):
                if idx in indices_pruned:
                    continue
                indices_try = indices_pruned + [idx]
                inputs_try = torch.zeros_like(inputs)
                inputs_try[:, indices_try, ...] = inputs[:, indices_try, ...]
                output_try = module(inputs_try)
                output_try_norm = output_try.norm(2)
                if output_try_norm < min_diff:
                    min_diff = output_try_norm
                    min_idx = idx
            indices_pruned.append(min_idx)
        indices_stayed = list(
            set([i for i in range(num_channel)]) - set(indices_pruned))

    elif method == 'lasso':
        y = module(inputs)
        if module.bias is not None:  # bias.shape = [N]
            bias_size = [1] * y.dim()  # bias_size: [1, 1, 1, 1]
            bias_size[1] = -1  # [1, -1, 1, 1]
            bias = module.bias.view(
                bias_size)  # bias.view([1, -1, 1, 1] = [1, N, 1, 1])
            y -= bias  # output feature 에서 bias 만큼을 빼줌 (y - b)
        else:
            bias = 0.
        y = y.view(-1).data.cpu().numpy()  # flatten all of outputs
        y_channel_spread = []
        for i in range(num_channel):
            x_channel_i = torch.zeros_like(inputs)
            x_channel_i[:, i, ...] = inputs[:, i, ...]
            y_channel_i = module(x_channel_i) - bias
            y_channel_spread.append(y_channel_i.data.view(-1, 1))
        y_channel_spread = torch.cat(y_channel_spread, dim=1).cpu()

        alpha = 1e-7
        solver = Lasso(alpha=alpha,
                       warm_start=True,
                       selection='random',
                       random_state=0)

        # 원하는 수의 채널이 삭제될 때까지 alpha 값을 조금씩 늘려나감
        alpha_l, alpha_r = 0, alpha
        num_pruned_try = 0
        while num_pruned_try < num_pruned:
            alpha_r *= 2
            solver.alpha = alpha_r
            solver.fit(y_channel_spread, y)
            num_pruned_try = sum(solver.coef_ == 0)

        # 충분하게 pruning 되는 alpha 를 찾으면, 이후 alpha 값의 좌우를 좁혀 나가면서 좀 더 정확한 alpha 값을 찾음
        num_pruned_max = int(num_pruned * 1.1)
        while True:
            alpha = (alpha_l + alpha_r) / 2
            solver.alpha = alpha
            solver.fit(y_channel_spread, y)
            num_pruned_try = sum(solver.coef_ == 0)
            if num_pruned_try > num_pruned_max:
                alpha_r = alpha
            elif num_pruned_try < num_pruned:
                alpha_l = alpha
            else:
                break

        # 마지막으로, lasso coeff를 index로 변환
        indices_stayed = np.where(solver.coef_ != 0)[0].tolist()
        indices_pruned = np.where(solver.coef_ == 0)[0].tolist()

    else:
        raise NotImplementedError

    return indices_stayed, indices_pruned  # 선택된 채널의 인덱스를 리턴
Пример #11
0
plt.show()



#LASSO

from sklearn.linear_model import Lasso

alpha_space = np.logspace(-4, 0.5, 5)
R2_test = []
R2_train = []
alpha_serie = []
lasso = Lasso(normalize = True)

for alpha in alpha_space:
    lasso.alpha = alpha
    lasso.fit(X_train_std, y_train_std)
    y_train_pred = lasso.predict(X_train_std)
    y_test_pred = lasso.predict(X_test_std)
    
    print('alpha = %.4f'%alpha)
    print('\tIntercept:\t%.3f' % lasso.intercept_)
#    print('%.3f' % lasso.intercept_)
    for i in range (13):
#        print('%.3f' %(lasso.coef_[i])) 
        print('\tSlope #%.0f:\t%.3f' %(i+1, lasso.coef_[i]))  
    
    print('\tMSE train: %.3f, test: %.3f \tR^2 train: %.3f, test: %.3f' % 
      (mean_squared_error(y_train_std, y_train_pred),
       mean_squared_error(y_test_std, y_test_pred), 
       r2_score(y_train_std, y_train_pred),
Пример #12
0
Looking for best alpha parameter for Lasso estimator
"""

from sklearn import datasets
from sklearn.linear_model import Lasso
from sklearn.model_selection import GridSearchCV, train_test_split
import pandas as pd
import numpy as np

diabetes = datasets.load_diabetes()
X = pd.DataFrame(diabetes.data, columns=diabetes.feature_names)
y = pd.Series(diabetes.target)

X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.1)

lasso = Lasso()

gscv = GridSearchCV(lasso,{'alpha':np.logspace(-4,-0.5,30)})
gscv.fit(X_train, y_train)
gscv_score = gscv.cv_results_['mean_test_score']
best_alpha = gscv.best_params_['alpha']
print('best alpha value is {}'.format(best_alpha))

lasso.alpha = best_alpha
lasso.fit(X_train, y_train)
lasso_score = lasso.score(X_test, y_test)
print('best lasso score is {}'.format(lasso_score))



Пример #13
0
def channel_selection(inputs,
                      layer,
                      sparsity,
                      method="lasso",
                      data_format="channels_last"):
    """
    입력된 레이어의 출력 채널 중 프루닝 할 채널을 선택합니다.
    이 함수를 통해 현재 레이어에서 프루닝 할 채널과 해당 채널을 만드는 필터를 선택한 후 해당 채널의 인덱스를 리턴합니다.
    채널 선택을 위해, 다음 레이어의 input (X) 과 다음 레이어의 output (Y) 을 비교하게 됩니다.
    :param sparsity: float, 0 ~ 1 how many prune channel of output of this layer
    :param inputs: Tensor, input features map for next layer (corresponding to output of this layer)
    :param layer: module of the next layer (conv)
    :param method: str, how to select the channel
    :return:
        list of int, indices of filters to be pruned
    """
    num_channel = inputs.shape[
        -1] if data_format == "channels_last" else inputs.shape[
            1]  # 채널 수, next_inputs -> NHWC
    num_pruned = int(math.floor(num_channel *
                                sparsity))  # 입력된 sparsity 에 맞춰 삭제되어야 하는 채널 수

    # lasso 방식의 channel selection
    if method == "lasso":
        if layer.use_bias:
            bias = layer.get_weights()[1].reshape((1, 1, 1, -1))
        else:
            bias = np.zeros((1, 1, 1, -1))

        outputs = layer(inputs).numpy()
        outputs = outputs - bias
        y = np.reshape(outputs, -1)
        x = []
        for i in range(num_channel):
            inputs_channel_i = np.zeros_like(inputs)
            inputs_channel_i[:, :, :, i] = inputs[:, :, :, i]
            outputs_channel_i = layer(inputs_channel_i).numpy()
            outputs_channel_i = outputs_channel_i - bias
            x.append(np.reshape(outputs_channel_i, -1))
        x = np.stack(x, axis=1)

        x = x[np.nonzero(y)]
        y = y[np.nonzero(y)]

        alpha = 1e-7
        solver = Lasso(alpha=alpha,
                       warm_start=True,
                       selection='random',
                       random_state=0)

        # 원하는 수의 채널이 삭제될 때까지 alpha 값을 조금씩 늘려나감
        alpha_l, alpha_r = 0, alpha
        num_pruned_try = 0
        while num_pruned_try < num_pruned:
            alpha_r *= 2
            solver.alpha = alpha_r
            solver.fit(x, y)
            num_pruned_try = sum(solver.coef_ == 0)

        # 충분하게 pruning 되는 alpha 를 찾으면, 이후 alpha 값의 좌우를 좁혀 나가면서 좀 더 정확한 alpha 값을 찾음
        num_pruned_max = int(num_pruned * 1.1)
        while True:
            alpha = (alpha_l + alpha_r) / 2
            solver.alpha = alpha
            solver.fit(x, y)
            num_pruned_try = sum(solver.coef_ == 0)
            if num_pruned_try > num_pruned_max:
                alpha_r = alpha
            elif num_pruned_try < num_pruned:
                alpha_l = alpha
            else:
                break

        # 마지막으로, lasso coeff를 index로 변환
        indices_stayed = np.where(solver.coef_ != 0)[0].tolist()
        indices_pruned = np.where(solver.coef_ == 0)[0].tolist()

    # greedy 방식의 channel selection
    elif method == "greedy":
        channels_norm = []
        for i in range(num_channel):
            inputs_channel_i = np.zeros_like(inputs)
            inputs_channel_i[:, :, :, i] = inputs[:, :, :, i]
            outputs_channel_i = layer(inputs_channel_i).numpy()
            outputs_channel_i_norm = np.linalg.norm(outputs_channel_i)
            channels_norm.append(outputs_channel_i_norm)

        indices_pruned = np.argsort(channels_norm)[:num_pruned]

        mask = np.ones(num_channel, np.bool)
        mask[indices_pruned] = 0
        indices_stayed = np.arange(num_channel)[mask].tolist()
    else:
        raise NotImplementedError

    return indices_pruned, indices_stayed  # 선택된 채널의 인덱스를 리턴
def channel_selection(sparsity,
                      output_feature,
                      fn_next_output_feature,
                      method='greedy'):
    """
    select channel to prune with a given metric
    :param sparsity: float, pruning sparsity
    :param output_feature: torch.(cuda.)Tensor, output feature map of the layer being pruned
    :param fn_next_output_feature: function, function to calculate the next output feature map
    :param method: str
                    'greedy': select one contributed to the smallest next feature after another
                    'lasso': select pruned channels by lasso regression
                    'random': randomly select
    :return:
        list of int, indices of filters to be pruned
    """
    num_channel = output_feature.size(1)
    num_pruned = int(math.floor(num_channel * sparsity))

    if method == 'greedy':
        indices_pruned = []
        while len(indices_pruned) < num_pruned:
            min_diff = 1e10
            min_idx = 0
            for idx in range(num_channel):
                if idx in indices_pruned:
                    continue
                indices_try = indices_pruned + [idx]
                output_feature_try = torch.zeros_like(output_feature)
                output_feature_try[:, indices_try,
                                   ...] = output_feature[:, indices_try, ...]
                output_feature_try = fn_next_output_feature(output_feature_try)
                output_feature_try_norm = output_feature_try.norm(2)
                if output_feature_try_norm < min_diff:
                    min_diff = output_feature_try_norm
                    min_idx = idx
            indices_pruned.append(min_idx)
    elif method == 'lasso':
        next_output_feature = fn_next_output_feature(output_feature)
        num_el = next_output_feature.numel()
        next_output_feature = next_output_feature.data.view(num_el).cpu()
        next_output_feature_divided = []
        for idx in range(num_channel):
            output_feature_try = torch.zeros_like(output_feature)
            output_feature_try[:, idx, ...] = output_feature[:, idx, ...]
            output_feature_try = fn_next_output_feature(output_feature_try)
            next_output_feature_divided.append(
                output_feature_try.data.view(num_el, 1))
        next_output_feature_divided = torch.cat(next_output_feature_divided,
                                                dim=1).cpu()

        alpha = 5e-5
        solver = Lasso(alpha=alpha, warm_start=True, selection='random')

        # first, try to find a alpha that provides enough pruned channels
        alpha_l, alpha_r = 0, alpha
        num_pruned_try = 0
        while num_pruned_try < num_pruned:
            alpha_r *= 2
            solver.alpha = alpha_r
            solver.fit(next_output_feature_divided, next_output_feature)
            num_pruned_try = sum(solver.coef_ == 0)

        # then, narrow down alpha to get more close to the desired number of pruned channels
        num_pruned_max = int(num_pruned * num_pruned_tolerate_coeff)
        while True:
            alpha = (alpha_l + alpha_r) / 2
            solver.alpha = alpha
            solver.fit(next_output_feature_divided, next_output_feature)
            num_pruned_try = sum(solver.coef_ == 0)
            if num_pruned_try > num_pruned_max:
                alpha_r = alpha
            elif num_pruned_try < num_pruned:
                alpha_l = alpha
            else:
                break

        # finally, convert lasso coeff to indices
        indices_pruned = solver.coef_.nonzero()[0].tolist()
    elif method == 'random':
        indices_pruned = random.sample(range(num_channel), num_pruned)
    else:
        raise NotImplementedError

    return indices_pruned
Пример #15
0
    beta, prediRidge = ridge_regression(x_train, x_test, y_train, val)
    mseRidge = mse(prediRidge, y_test)
    if (mseRidge <= MSE_R):
        alphaR = val
        Beta_R = beta
        pred_Ridge = prediRidge
        MSE_R = mseRidge

#Print results
print('\n--Ridge regression--')
print('The best value for alpha = ', alphaR)
print(tabulate(all_values(pred_Ridge, y_test)))

#--------------Lasso Regression-------------
from sklearn.linear_model import Lasso  #Using Sklearn as I did in 1st project
alphasL = np.logspace(-4, 5, 10)
regr = Lasso()
scores = [
    regr.set_params(alpha=alpha).fit(x_train, y_train).score(x_test, y_test)
    for alpha in alphasL
]
best_alpha = alphasL[scores.index(max(scores))]
regr.alpha = best_alpha
regr.fit(x_train, y_train)
pred_Lasso = regr.predict(x_test)

#Print results
print('\n--Lasso regression--')
print('The best value for alpha = ', best_alpha)
print(tabulate(all_values(pred_Lasso, y_test)))
Пример #16
0
def oppgave_6(o=15, seed=4, test=True):

    # Load the terrain
    terrain = imread("{}SRTM_data_Norway_1.tif".format(image_path))
    # Show the terrain
    plt.figure()
    plt.title('Terrain Norway 1, Original')
    plt.imshow(terrain, cmap='gray')
    plt.xlabel('X')
    plt.ylabel('Y')
    plt.show()

    #Pick out  small square to analyze if test is set to True
    if test:
        #Pick out  small square to analyze
        square_size = 100
        x_shift = np.random.randint(0, 1801 - square_size)
        y_shift = np.random.randint(0, 3601 - square_size)
        terrain = terrain[y_shift:y_shift + square_size,
                          x_shift:x_shift + square_size]
        plt.figure()
        plt.title('Terrain part 1, Original {} pt box'.format(square_size))
        plt.imshow(terrain, cmap='gray')
        plt.xlabel('X')
        plt.ylabel('Y')
        plt.show()
    else:
        #Use settings determined  by analysing small squares for analysis
        #on entire dataset. Attemting to rebuild the image from
        #a model based on evenly spaced datapoints

        #Set model parameters
        order = 15
        #Ridge parameter
        lmd = 0.0001
        #Lasso parameter
        alph = 0.0001
        #Set the coarseness of the sample grid
        coarseness = 5
        x_dimension_original = len(terrain[0, :])
        y_dimension_original = len(terrain[:, 0])
        x_dimension = x_dimension_original // coarseness
        y_dimension = y_dimension_original // coarseness
        terrain_points = np.zeros((y_dimension, x_dimension))
        for x_axis in range(x_dimension):
            for y_axis in range(y_dimension):
                terrain_points[y_axis, x_axis] = terrain[y_axis * coarseness,
                                                         x_axis * coarseness]
        #Create mesh grid for training data, selected points
        x = np.linspace(0, 1, x_dimension)
        y = np.linspace(0, 1, y_dimension)
        x_grid, y_grid = np.meshgrid(x, y)
        #Create meshgrid for original data
        x_original = np.linspace(0, 1, x_dimension_original)
        y_original = np.linspace(0, 1, y_dimension_original)
        x_grid_original, y_grid_original = np.meshgrid(x_original, y_original)
        #Flatten grids
        data = np.ravel(terrain_points)
        data_original = np.ravel(terrain)
        x = np.ravel(x_grid)
        y = np.ravel(y_grid)
        x_original = np.ravel(x_grid_original)
        y_original = np.ravel(y_grid_original)
        #Creates a scaler to normalize data
        scaler = MinMaxScaler()
        print("Running time: {} seconds".format(time() - t0))
        #Normalizing data
        scaler.fit(data.reshape(-1, 1))
        #Normalizing training data
        normalized_data = scaler.transform(data.reshape(-1, 1))
        normalized_data = normalized_data[:, 0]
        #Normalizing original data --------not used?
        normalized_data_original = scaler.transform(
            data_original.reshape(-1, 1))
        normalized_data_original = normalized_data_original[:, 0]

        #Initiate instances of the regressors
        linear_regression = LinearRegression()
        ridge_regression = Ridge(solver="svd", alpha=lmd)
        lasso_regression = Lasso(alpha=alph)
        print("Running time: {} seconds".format(time() - t0))
        #Create training matrix
        A = design_matrix(order, x, y)
        #Remove intercept
        A = A[:, 1:]
        print("Running time: {} seconds".format(time() - t0))
        #Create prediction matrix
        X_test = design_matrix(order, x_original, y_original)
        X_test = X_test[:, 1:]
        print("Running time: {} seconds".format(time() - t0))
        #Make prediction using OLS model
        linear_regression.fit(A, normalized_data)
        rebuilt = linear_regression.predict(X_test)
        print("OLS MSE: ", MSE(normalized_data_original, rebuilt))
        rebuilt = scaler.inverse_transform(rebuilt.reshape(-1, 1))
        rebuilt = np.reshape(rebuilt, y_grid_original.shape)
        fig_rebuild = plt.figure(figsize=(9, 5))
        ax1 = fig_rebuild.add_subplot(131)
        ax2 = fig_rebuild.add_subplot(132)
        ax3 = fig_rebuild.add_subplot(133)
        plt.title('Terrain Norway 1, rebuild')
        ax1.imshow(rebuilt, cmap='gray')
        plt.xlabel('X')
        plt.ylabel('Y')
        #Make prediction using Ridge model
        ridge_regression.fit(A, normalized_data)
        rebuilt = ridge_regression.predict(X_test)
        print("Ridge MSE: ", MSE(normalized_data_original, rebuilt))
        rebuilt = scaler.inverse_transform(rebuilt.reshape(-1, 1))
        print("Running time: {} seconds".format(time() - t0))
        rebuilt = np.reshape(rebuilt, y_grid_original.shape)
        ax2.imshow(rebuilt, cmap='gray')

        #Make prediction using LASSO model
        lasso_regression.fit(A, normalized_data)
        rebuilt = lasso_regression.predict(X_test)
        print("LASSO MSE: ", MSE(normalized_data_original, rebuilt))
        rebuilt = scaler.inverse_transform(rebuilt.reshape(-1, 1))
        print("Running time: {} seconds".format(time() - t0))
        rebuilt = np.reshape(rebuilt, y_grid_original.shape)
        ax3.imshow(rebuilt, cmap='gray')

        fig_rebuild.savefig("{}TerrainRebuilOrder{}P4.png".format(
            plots_path, order))

        return ()

    #Get dimensions of data set and make a grid to base the model on
    y_dimension = len(terrain[:, 0])
    x_dimension = len(terrain[0, :])

    x = np.linspace(0, 1, x_dimension)
    y = np.linspace(0, 1, y_dimension)
    x_grid, y_grid = np.meshgrid(x, y)
    #Flatten grid
    data = np.ravel(terrain)
    x = np.ravel(x_grid)
    y = np.ravel(y_grid)
    #set random seed
    np.random.seed(seed)

    #Creates a scaler to normalize data
    scaler = MinMaxScaler()

    #Normalizing data
    scaler.fit(data.reshape(-1, 1))
    normalized_data = scaler.transform(data.reshape(-1, 1))
    normalized_data = normalized_data[:, 0]

    #Create instances of sklearn kFold klass to split data for kfoldcv
    splits = 5
    kfold = KFold(n_splits=splits, shuffle=True)
    #Sets a range of polynomial orders to fit to the data
    polynomial_order = np.arange(o) + 1

    #---------OLS------------------------------
    #------------------------------------------
    #Solve using OLS

    linear_regression = LinearRegression()

    dta = list()
    for order in polynomial_order:
        print("Using polynomial order {}".format(order))
        #Creating designmatrix
        A = design_matrix(order, x, y)
        mse_test = np.zeros(splits)
        mse_train = np.zeros(splits)
        counter = 0
        #Initiating kfold cv
        for train_index, test_index in kfold.split(normalized_data):
            print("Calculating fold {} of {}".format(counter + 1, splits))
            X_train, X_test = A[train_index], A[test_index]
            y_train, y_test = normalized_data[train_index], normalized_data[
                test_index]
            #Using current  polynomial order and fold to solve using OLS
            linear_regression.fit(X_train, y_train)
            ytilde = linear_regression.predict(X_train)
            ypredict = linear_regression.predict(X_test)
            #Get MSE metric for training and testing data
            mse_test[counter] = MSE(y_test, ypredict)
            mse_train[counter] = MSE(y_train, ytilde)
            counter = counter + 1
            print(counter)
            print("Running time: {} seconds".format(time() - t0))

        dta.append(["{}".format(order), mse_test.mean(), mse_train.mean()])
        '''     
        rebuilt =  linear_regression.predict(A)
        rebuilt = scaler.inverse_transform(rebuilt.reshape(-1,1))
        rebuilt = np.reshape(rebuilt,y_grid.shape)
        plt.figure()
        plt.title('Terrain Norway 1, rebuild')
        plt.imshow(rebuilt, cmap='gray')
        plt.xlabel('X')
        plt.ylabel('Y')
        plt.show()
        '''
    df = pd.DataFrame(
        dta, columns=["Polynomial", "MSE test set", "MSE training set"])

    plt.figure()
    fig1 = plt.figure(figsize=(8, 4))
    ax1 = fig1.add_subplot(111)
    ax1.set_position([0.1, 0.1, 0.6, 0.8])
    ax1.set_xlabel("Polynomial order")
    ax1.set_ylabel("Training MSE")
    fig2 = plt.figure(figsize=(8, 4))
    ax2 = fig2.add_subplot(111)
    ax2.set_position([0.1, 0.1, 0.6, 0.8])
    ax2.set_xlabel("Polynomial order")
    ax2.set_ylabel("Testing MSE")
    ax1.plot(df["Polynomial"], df["MSE training set"], label="Training OLS")
    ax2.plot(df["Polynomial"], df["MSE test set"], label="Test OLS")
    fig1.legend(bbox_to_anchor=(0.71, 0.5), loc="center left", borderaxespad=0)
    fig2.legend(bbox_to_anchor=(0.71, 0.5), loc="center left", borderaxespad=0)
    fig1.savefig("{}TerrainOLStrainSeed{}.png".format(plots_path, seed))
    fig2.savefig("{}TerrainOLStestSeed{}.png".format(plots_path, seed))

    #---------RIDGE----------------------------
    #------------------------------------------
    #Creates a dictionary to store dataframes for each Ridge parameter
    dataframe_dic = dict()
    ridge_regression = Ridge(solver="svd")
    #Set a range og shrinkage factors for the Ridge regression
    lambdas = np.logspace(-5, -1, 10)
    for lmd in lambdas:
        print("Calculating Ridge, lambda: {}".format(lmd))
        #Creates a list to store the results of each iteration in
        dta = list()
        for order in polynomial_order:
            print("Using polynomial order {}".format(order))
            #Creating designmatrix
            A = design_matrix(order, x, y)
            #Removing intercept
            A = A[:, 1:]
            lambda_mse_test = np.zeros(splits)
            lambda_mse_train = np.zeros(splits)
            counter = 0
            #Initiating kfold cv
            for train_index, test_index in kfold.split(normalized_data):
                X_train, X_test = A[train_index], A[test_index]
                y_train, y_test = normalized_data[
                    train_index], normalized_data[test_index]
                #Using current lambda and polynomial order solve using Ridge
                ridge_regression.alpha = lmd
                ridge_regression.fit(X_train, y_train)
                #Estimate testing and training data
                ypredict = ridge_regression.predict(X_test)
                ytilde = ridge_regression.predict(X_train)
                #Get MSE metric for training and testing data
                lambda_mse_test[counter] = MSE(y_test, ypredict)
                lambda_mse_train[counter] = MSE(y_train, ytilde)
                print("Calculating fold {} of {}".format(counter + 1, splits))
                counter = counter + 1
                print("Running time: {} seconds".format(time() - t0))
            dta.append([
                "{}".format(order),
                lambda_mse_test.mean(),
                lambda_mse_train.mean()
            ])
            '''
            rebuilt =  ridge_regression.predict(A)
            rebuilt = scaler.inverse_transform(rebuilt.reshape(-1,1))
            rebuilt = np.reshape(rebuilt,y_grid.shape)
            plt.figure()
            plt.title('Terrain Norway 1, rebuild')
            plt.imshow(rebuilt, cmap='gray')
            plt.xlabel('X')
            plt.ylabel('Y')
            plt.show()
            '''
        df = pd.DataFrame(
            dta, columns=["Polynomial", "MSE test set", "MSE training set"])
        dataframe_dic[lmd] = df

    cmap = plt.get_cmap('jet_r')
    plt.figure()
    fig1 = plt.figure(figsize=(8, 4))
    ax1 = fig1.add_subplot(111)
    ax1.set_position([0.1, 0.1, 0.6, 0.8])
    ax1.set_xlabel("Polynomial order")
    ax1.set_ylabel("Training MSE")
    fig2 = plt.figure(figsize=(8, 4))
    ax2 = fig2.add_subplot(111)
    ax2.set_position([0.1, 0.1, 0.6, 0.8])
    ax2.set_xlabel("Polynomial order")
    ax2.set_ylabel("Testing MSE")
    n = 0
    for df in dataframe_dic:
        ax1.plot(dataframe_dic[df]["Polynomial"],
                 dataframe_dic[df]["MSE training set"],
                 color=cmap(float(n) / len(lambdas)),
                 label="Alpha=%10.2E" % (df))
        ax2.plot(dataframe_dic[df]["Polynomial"],
                 dataframe_dic[df]["MSE test set"],
                 color=cmap(float(n) / len(lambdas)),
                 label="Alpha=%10.2E" % (df))
        n = n + 1
    fig1.legend(bbox_to_anchor=(0.71, 0.5), loc="center left", borderaxespad=0)
    fig2.legend(bbox_to_anchor=(0.71, 0.5), loc="center left", borderaxespad=0)
    fig1.savefig("{}TerrainRidgetrainSeed{}.png".format(plots_path, seed))
    fig2.savefig("{}TerrainRidgetestSeed{}.png".format(plots_path, seed))

    #---------LASSO----------------------------
    #------------------------------------------

    #Create an instance of the Lasso class from sklearn
    lasso_regression = Lasso()
    #Set a range og shrinkage factors for the LASSO regression
    alphas = np.logspace(-5, -2, 10)
    dataframe_dic = dict()
    for alph in alphas:
        print("Calculating LASSO, alpha: {}".format(alph))
        #Creates a list to store the results of each iteration in
        dta = list()
        for order in polynomial_order:
            print("Using polynomial order {}".format(order))
            #Creating designmatrix
            A = design_matrix(order, x, y)
            #Removing intercept
            A = A[:, 1:]
            alpha_mse_test = np.zeros(splits)
            alpha_mse_train = np.zeros(splits)
            counter = 0
            #Initiating kfold cv
            for train_index, test_index in kfold.split(normalized_data):
                X_train, X_test = A[train_index], A[test_index]
                y_train, y_test = normalized_data[
                    train_index], normalized_data[test_index]
                #Using current aplha and polynomial order solve using Lasso
                lasso_regression.alpha = alph
                lasso_regression.fit(X_train, y_train)
                #Estimate testing and training data
                ypredict = lasso_regression.predict(X_test)
                ytilde = lasso_regression.predict(X_train)
                #Get MSE metric for training and testing data
                alpha_mse_test[counter] = MSE(y_test, ypredict)
                alpha_mse_train[counter] = MSE(y_train, ytilde)
                print("Calculating fold {} of {}".format(counter + 1, splits))
                counter = counter + 1
                print("Running time: {} seconds".format(time() - t0))
            dta.append([
                "{}".format(order),
                alpha_mse_test.mean(),
                alpha_mse_train.mean()
            ])
        df = pd.DataFrame(
            dta, columns=["Polynomial", "MSE test set", "MSE training set"])
        dataframe_dic[alph] = df

    cmap = plt.get_cmap('jet_r')
    plt.figure()
    fig1 = plt.figure(figsize=(8, 4))
    ax1 = fig1.add_subplot(111)
    ax1.set_position([0.1, 0.1, 0.6, 0.8])
    ax1.set_xlabel("Polynomial order")
    ax1.set_ylabel("Training MSE")
    fig2 = plt.figure(figsize=(8, 4))
    ax2 = fig2.add_subplot(111)
    ax2.set_position([0.1, 0.1, 0.6, 0.8])
    ax2.set_xlabel("Polynomial order")
    ax2.set_ylabel("Testing MSE")
    n = 0
    for df in dataframe_dic:
        ax1.plot(dataframe_dic[df]["Polynomial"],
                 dataframe_dic[df]["MSE training set"],
                 color=cmap(float(n) / len(alphas)),
                 label="Alpha=%10.2E" % (df))
        ax2.plot(dataframe_dic[df]["Polynomial"],
                 dataframe_dic[df]["MSE test set"],
                 color=cmap(float(n) / len(alphas)),
                 label="Alpha=%10.2E" % (df))
        n = n + 1
    fig1.legend(bbox_to_anchor=(0.71, 0.5), loc="center left", borderaxespad=0)
    fig2.legend(bbox_to_anchor=(0.71, 0.5), loc="center left", borderaxespad=0)
    fig1.savefig("{}TerrainLASSOtrainSeed{}.png".format(plots_path, seed))
    fig2.savefig("{}TerrainLASSOtestSeed{}.png".format(plots_path, seed))
def channel_selection(inputs, module, sparsity=0.5, method='greedy'):
    """
    현재 모듈의 입력 채널중, 중요도가 높은 채널을 선택합니다.
    기존의 output을 가장 근접하게 만들어낼 수 있는 입력 채널을 찾아냅니댜.
    :param inputs: torch.Tensor, input features map
    :param module: torch.nn.module, layer
    :param sparsity: float, 0 ~ 1 how many prune channel of output of this layer
    :param method: str, how to select the channel
    :return:
        list of int, indices of channel to be selected and pruned
    """
    num_channel = inputs.size(1)  # 채널 수
    num_pruned = int(math.ceil(num_channel *
                               sparsity))  # 입력된 sparsity 에 맞춰 삭제되어야 하는 채널 수
    num_stayed = num_channel - num_pruned

    print('num_pruned', num_pruned)
    if method == 'greedy':
        indices_pruned = []
        while len(indices_pruned) < num_pruned:
            min_diff = 1e10
            min_idx = 0
            for idx in range(num_channel):
                if idx in indices_pruned:
                    continue
                indices_try = indices_pruned + [idx]
                inputs_try = torch.zeros_like(inputs)
                inputs_try[:, indices_try, ...] = inputs[:, indices_try, ...]
                output_try = module(inputs_try)
                output_try_norm = output_try.norm(2)
                if output_try_norm < min_diff:
                    min_diff = output_try_norm
                    min_idx = idx
            indices_pruned.append(min_idx)

        print('indices_pruned !!! ', indices_pruned)

        indices_stayed = list(
            set([i for i in range(num_channel)]) - set(indices_pruned))

    elif method == 'greedy_GM':
        indices_stayed = []
        while len(indices_stayed) < num_stayed:
            max_farthest_channel_norm = 1e-10
            farthest_channel_idx = 0

            for idx in range(num_channel):
                if idx in indices_stayed:
                    continue
                indices_try = indices_stayed + [idx]
                inputs_try = torch.zeros_like(inputs)
                inputs_try[:, indices_try, ...] = inputs[:, indices_try, ...]
                output_try = module(inputs_try).view(
                    num_channel, -1).cpu().detach().numpy()
                similar_matrix = distance.cdist(output_try, output_try,
                                                'euclidean')
                similar_sum = np.sum(np.abs(similar_matrix), axis=0)
                similar_large_index = similar_sum.argsort()[-1]
                farthest_channel_norm = np.linalg.norm(
                    similar_sum[similar_large_index])

                if max_farthest_channel_norm < farthest_channel_norm:
                    max_farthest_channel_norm = farthest_channel_norm
                    farthest_channel_idx = idx

            print(farthest_channel_idx)
            indices_stayed.append(farthest_channel_idx)

        print('indices_stayed !!! ', indices_stayed)

        indices_pruned = list(
            set([i for i in range(num_channel)]) - set(indices_stayed))

    elif method == 'lasso':
        y = module(inputs)

        if module.bias is not None:  # bias.shape = [N]
            bias_size = [1] * y.dim()  # bias_size: [1, 1, 1, 1]
            bias_size[1] = -1  # [1, -1, 1, 1]
            bias = module.bias.view(
                bias_size)  # bias.view([1, -1, 1, 1] = [1, N, 1, 1])
            y -= bias  # output feature 에서 bias 만큼을 빼줌 (y - b)
        else:
            bias = 0.
        y = y.view(-1).data.cpu().numpy()  # flatten all of outputs
        y_channel_spread = []
        for i in range(num_channel):
            x_channel_i = torch.zeros_like(inputs)
            x_channel_i[:, i, ...] = inputs[:, i, ...]
            y_channel_i = module(x_channel_i) - bias
            y_channel_spread.append(y_channel_i.data.view(-1, 1))
        y_channel_spread = torch.cat(y_channel_spread, dim=1).cpu()

        alpha = 1e-7
        solver = Lasso(alpha=alpha,
                       warm_start=True,
                       selection='random',
                       random_state=0)

        # choice_idx = np.random.choice(y_channel_spread.size()[0], 2000, replace=False)
        # selected_y_channel_spread = y_channel_spread[choice_idx, :]
        # new_output = y[choice_idx]
        #
        # del y_channel_spread, y

        # 원하는 수의 채널이 삭제될 때까지 alpha 값을 조금씩 늘려나감
        alpha_l, alpha_r = 0, alpha
        num_pruned_try = 0
        while num_pruned_try < num_pruned:
            alpha_r *= 2
            solver.alpha = alpha_r
            # solver.fit(selected_y_channel_spread, new_output)
            solver.fit(y_channel_spread, y)
            num_pruned_try = sum(solver.coef_ == 0)

        # 충분하게 pruning 되는 alpha 를 찾으면, 이후 alpha 값의 좌우를 좁혀 나가면서 좀 더 정확한 alpha 값을 찾음
        num_pruned_max = int(num_pruned)
        while True:
            alpha = (alpha_l + alpha_r) / 2
            solver.alpha = alpha
            # solver.fit(selected_y_channel_spread, new_output)
            solver.fit(y_channel_spread, y)
            num_pruned_try = sum(solver.coef_ == 0)

            if num_pruned_try > num_pruned_max:
                alpha_r = alpha
            elif num_pruned_try < num_pruned:
                alpha_l = alpha
            else:
                break

        # 마지막으로, lasso coeff를 index로 변환
        indices_stayed = np.where(solver.coef_ != 0)[0].tolist()
        indices_pruned = np.where(solver.coef_ == 0)[0].tolist()

    else:
        raise NotImplementedError

    inputs = inputs.cuda()
    module = module.cuda()

    return indices_stayed, indices_pruned  # 선택된 채널의 인덱스를 리턴
Пример #18
0
    def fit(self, y, fill_to_max=True, verbose=False):
        """fill_to_max: whether or not to return `max_non_zero_entry` items. 
        i.e.: whether to include tailing zeros if # of non zero entries is less than `max_non_zero_entry`. """
        y = np.r_[y, 1]
        alpha_coefficient = 2.0 * self.bases.shape[0]
        min_alpha, max_alpha = 1e-4, 1000
        self.alpha_t = 15.0

        shrinkage_factor, expand_factor = 0.9, 1.5
        clf = Lasso(alpha=self.alpha_t / alpha_coefficient)

        # Check if max_alpha is large enough (for debug purpose)
        # clf.alpha = max_alpha / alpha_coefficient
        # clf.fit(self.bases, y)
        # x = clf.coef_
        # num_non_zero_entry = np.count_nonzero(x)
        # if num_non_zero_entry > self.max_non_zero_entry:
        #     print("max_alpha = {0}, clf.alpha = {1} too small!".format(max_alpha, clf.alpha))

        while True:
            clf.alpha = self.alpha_t / alpha_coefficient
            clf.fit(self.bases, y)
            x = clf.coef_
            num_non_zero_entry = np.count_nonzero(x)
            if num_non_zero_entry > self.max_non_zero_entry:
                # too many non zero entries => current alpha too small
                min_alpha = self.alpha_t
                new_alpha_t = self.alpha_t * expand_factor
                if new_alpha_t > max_alpha:
                    self.alpha_t = (new_alpha_t + max_alpha) / 2.0
                else:
                    self.alpha_t = new_alpha_t
            else:
                # too few non zero entries => current alpha too large
                max_alpha = self.alpha_t
                self.alpha_t *= shrinkage_factor
                if self.alpha_t < min_alpha:
                    break
        if verbose:
            lf, l1, l2 = self.loss(x, y)
            print(lf, l1, l2)
            print("Alpha range: {0} {1}".format(min_alpha, max_alpha))
            print("# of non-zero entries: {0}".format(np.count_nonzero(x)))

        # indices and values are all 1-D np.ndarrays
        indices = np.nonzero(x)[0]
        values = x[indices]

        if fill_to_max:
            num_base = self.bases.shape[1]
            random_basis_to_append = dict()
            i = 0
            while i + num_non_zero_entry < self.max_non_zero_entry:
                r = random.randint(0, num_base - 1)
                # print(r, indices)
                if (r not in indices) and (r not in random_basis_to_append):
                    random_basis_to_append[r] = True
                    i += 1
            indices = np.r_[
                indices,
                np.array([key for key in random_basis_to_append.keys()])]
            values = np.r_[values,
                           np.zeros(self.max_non_zero_entry -
                                    num_non_zero_entry)]
        return indices, values
Пример #19
0
def oppgave_5(o=5, level_of_noise=0, seed=1):
    #Setting the number of datapoints, the amount of noise
    #in the Franke function and the order of the polinomial
    #used as a model.
    number_of_datapoints = 40
    np.random.seed(seed)
    #Making the input and output vektors of the dataset
    x, y = make_data(number_of_datapoints)
    z, noise = franke_function(x, y, level_of_noise, seed)
    #Flattening matrices for easier handling
    xDim1 = np.ravel(x)
    yDim1 = np.ravel(y)
    x = xDim1
    y = yDim1
    #Frankes function withou noise
    true = np.ravel(z)
    #Frankes function with noise
    noicy = true + np.ravel(noise)

    #Create instances of sklearn kFold klass to split data for kfoldcv
    lasso_regression = Lasso()
    #Create instances of sklearn kFold klass to split data for kfoldcv
    splits = 5
    kfold = KFold(n_splits=splits, shuffle=True)
    #Sets a range of polynomial orders to fit to the data
    polynomial_order = np.arange(o) + 1
    #Set a range og shrinkage factors for the LASSO regression
    alphas = np.logspace(-5, -2, 10)
    #Creates a dictionary to store dataframes for each LASSO parameter
    dataframe_dic = dict()

    for alph in alphas:
        print("Calculating LASSO, alpha: {}".format(alph))
        #Creates a list to store the results of each iteration in
        dta = list()
        for order in polynomial_order:
            print("Using polynomial order {}".format(order))
            #Creating designmatrix
            A = design_matrix(order, x, y)
            #Remove intecept
            A = A[:, 1:]
            alpha_mse_test = np.zeros(splits)
            alpha_mse_train = np.zeros(splits)
            counter = 0
            #Initiating kfold cv
            for train_index, test_index in kfold.split(noicy):
                print("Calculating fold {} of {}".format(counter + 1, splits))
                X_train, X_test = A[train_index], A[test_index]
                y_train = noicy[train_index]
                y_train_true, y_test_true = true[train_index], true[test_index]
                #Using current aplha and polynomial order solve using Lasso
                lasso_regression.alpha = alph
                lasso_regression.fit(X_train, y_train)
                #Estimate testing and training data
                ypredict = lasso_regression.predict(X_test)
                ytilde = lasso_regression.predict(X_train)
                #Get MSE metric for training and testing data
                alpha_mse_test[counter] = MSE(y_test_true, ypredict)
                alpha_mse_train[counter] = MSE(y_train_true, ytilde)
                counter = counter + 1
                print("Running time: {} seconds".format(time() - t0))
            dta.append([
                "{}".format(order),
                alpha_mse_test.mean(),
                alpha_mse_train.mean()
            ])
        df = pd.DataFrame(
            dta, columns=["Polynomial", "MSE test set", "MSE training set"])
        dataframe_dic[alph] = df

    cmap = plt.get_cmap('jet_r')
    plt.figure()
    fig1 = plt.figure(figsize=(8, 4))
    ax1 = fig1.add_subplot(111)
    ax1.set_position([0.1, 0.1, 0.6, 0.8])
    ax1.set_xlabel("Polynomial order")
    ax1.set_ylabel("Training MSE")
    fig2 = plt.figure(figsize=(8, 4))
    ax2 = fig2.add_subplot(111)
    ax2.set_position([0.1, 0.1, 0.6, 0.8])
    ax2.set_xlabel("Polynomial order")
    ax2.set_ylabel("Testing MSE")
    n = 0
    for df in dataframe_dic:
        ax1.plot(dataframe_dic[df]["Polynomial"],
                 dataframe_dic[df]["MSE training set"],
                 color=cmap(float(n) / len(alphas)),
                 label="Alpha=%10.2E" % (df))
        ax2.plot(dataframe_dic[df]["Polynomial"],
                 dataframe_dic[df]["MSE test set"],
                 color=cmap(float(n) / len(alphas)),
                 label="Alpha=%10.2E" % (df))
        print("alpha:", df)
        print(dataframe_dic[df])
        n = n + 1
    fig1.legend(bbox_to_anchor=(0.71, 0.5), loc="center left", borderaxespad=0)
    fig2.legend(bbox_to_anchor=(0.71, 0.5), loc="center left", borderaxespad=0)
    if level_of_noise < 0.21:
        lvl = "low"
    elif level_of_noise < 0.41:
        lvl = "med"
    else:
        lvl = "high"
    fig1.savefig("{}Oppg4LATrainSeed{}{}.png".format(plots_path, seed, lvl))
    fig2.savefig("{}Oppg4LATestSeed{}{}.png".format(plots_path, seed, lvl))
Пример #20
0
def channel_select(sparsity,
                   output_feature,
                   fn_next_input_feature,
                   next_module,
                   method='greedy',
                   p=2):
    """
    output_feature中选一些不重要的channel,使得fn_next_input_feature(output_feature_try)的lp norm最小
    next(_conv)_output_feature到next2_input_feature之间算是一种恒定的变换,
    因此这里不比较i+2层卷积层的输入,转而比较i+1层卷积层的输出
    """
    original_num = output_feature.size(1)
    pruned_num = int(math.floor(original_num * sparsity))  # 向下取整

    if method == 'greedy':  # ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression
        indices_pruned = []
        while len(indices_pruned) < pruned_num:
            min_diff = 1e10
            min_idx = 0
            for idx in range(original_num):
                if idx in indices_pruned:
                    continue
                indices_try = indices_pruned + [idx]
                output_feature_try = torch.zeros_like(output_feature)
                output_feature_try[:, indices_try,
                                   ...] = output_feature[:, indices_try, ...]
                next_output_feature_try = next_module(
                    fn_next_input_feature(output_feature_try))
                next_output_feature_try_norm = next_output_feature_try.norm(p)
                if next_output_feature_try_norm < min_diff:
                    min_diff = next_output_feature_try_norm
                    min_idx = idx
            indices_pruned.append(min_idx)
    elif method == 'lasso':  # Channel Pruning for Accelerating Very Deep Neural Networks
        # FIXME 无法收敛。。。待解决
        next_output_feature = next_module(
            fn_next_input_feature(output_feature))
        num_el = next_output_feature.numel()
        next_output_feature = next_output_feature.data.view(num_el).cpu()
        next_output_feature_divided = []
        for idx in range(original_num):  # 每个channel单独拿出来,其他通道为0
            output_feature_try = torch.zeros_like(output_feature)
            output_feature_try[:, idx, ...] = output_feature[:, idx, ...]
            next_output_feature_try = next_module(
                fn_next_input_feature(output_feature_try))
            next_output_feature_divided.append(
                next_output_feature_try.data.view(num_el, 1))
        next_output_feature_divided = torch.cat(next_output_feature_divided,
                                                dim=1).cpu()

        # import matplotlib.pyplot as plt  # 可视化绘制
        # X = next_output_feature_divided[:, 1:2]
        # y = next_output_feature
        # model = Lasso(alpha=0.000001, warm_start=True, selection='random', tol=4000)
        # model.fit(X, y)
        # predicted = model.predict(X)
        # # 绘制散点图 参数:x横轴 y纵轴
        # plt.scatter(X, y, marker='x')
        # plt.plot(X, predicted, c='r')
        # # 绘制x轴和y轴坐标
        # plt.xlabel("next_output_feature_divided[:, 0:1]")
        # plt.ylabel("next_output_feature")
        # # 显示图形
        # plt.savefig('Lasso1.png')

        # first, try to find a alpha that provides enough pruned channels
        alpha_try = 5e-5
        pruned_num_try = 0
        solver = Lasso(alpha=alpha_try, warm_start=True, selection='random')
        while pruned_num_try < pruned_num:
            alpha_try *= 2
            solver.alpha = alpha_try
            solver.fit(next_output_feature_divided, next_output_feature)
            pruned_num_try = sum(solver.coef_ == 0)
            print("lasso_alpha = {}, pruned_num_try = {}".format(
                alpha_try, pruned_num_try))

        # then, narrow down alpha to get more close to the desired number of pruned channels
        alpha_min = 0
        alpha_max = alpha_try
        pruned_num_tolerate_coeff = 1.1  # 死区
        pruned_num_max = int(pruned_num * pruned_num_tolerate_coeff)
        while True:
            alpha = (alpha_min + alpha_max) / 2
            solver.alpha = alpha
            solver.fit(next_output_feature_divided, next_output_feature)
            pruned_num_try = sum(solver.coef_ == 0)
            if pruned_num_try > pruned_num_max:
                alpha_max = alpha
            elif pruned_num_try < pruned_num:
                alpha_min = alpha
            else:
                print("lasso_alpha = {}".format(alpha))
                break

        # finally, convert lasso coeff to indices
        indices_pruned = solver.coef_.nonzero()[0].tolist()

    elif method == 'random':
        indices_pruned = random.sample(range(original_num), pruned_num)
    else:
        raise NotImplementedError

    return indices_pruned
Пример #21
0
reg3 = Lasso(alpha=1)

reg1.fit(trainX, trainy)
reg1.coef_
reg2.fit(trainX, trainy)
reg2.coef_
reg3.fit(trainX, trainy)
reg3.coef_

alphas = np.logspace(-3, 3, 30)  #30개 생성

linear_r2 = reg1.score(validX, validy)
result = pd.DataFrame(index=alphas, columns=['Ridge', 'Lasso'])
for alpha in alphas:
    reg2.alpha = alpha
    reg3.alpha = alpha
    reg2.fit(trainX, trainy)
    result.loc[alpha, 'Ridge'] = reg2.score(validX, validy)
    reg3.fit(trainX, trainy)
    result.loc[alpha, 'Lasso'] = reg3.score(validX, validy)

plt.plot(np.log(alphas), result['Ridge'], label="Ridge")
plt.plot(np.log(alphas), result['Lasso'], label="Lasso")
plt.hlines(linear_r2,
           np.log(alphas[0]),
           np.log(alphas[-1]),
           ls=':',
           color="k",
           label='Ordinary')
plt.legend()
    "Cross Validation Score after cross validation: ",
    cross_val_score(model_rf_cv, X_val, y_val, cv=10,
                    scoring='accuracy').mean())

acc_forest_cv = round(metrics.accuracy_score(y_test, pred_rf_cv), 4)
print('Random Forest Accuracy after cross validation= ', acc_forest_cv)
"""# **Lasso Model**"""

alpha_space = np.logspace(-4, 0, 50)
model_scores = []

lasso_model = Lasso(normalize=True)
for alpha in alpha_space:

    # Specify the alpha value to use
    lasso_model.alpha = alpha

    # Perform 10-fold CV
    lasso_cv_scores = cross_val_score(lasso_model, X, y, cv=10)

    # Append the mean of lasso_cv_scores to model_scores = []
    model_scores.append(np.mean(lasso_cv_scores))

print(model_scores)

# best alpha index for lasso
print(np.argmax(model_scores))
#plus in this index to the list of alphas

#best alpha to use
print(alpha_space[0])