Пример #1
0
def initialize_regressors(sgd_grid):
    l = SGDRegressor()
    regressions_to_fit = []
    for params in ParameterGrid(sgd_grid):
        l.set_params(**params)
        regressions_to_fit.append(clone(l))
    return regressions_to_fit
Пример #2
0
def meshes_loop(X, y, params):
    alpha = params['alpha']
    l1_ratio = params['l1_ratio']
    results = pd.DataFrame(
        columns=['alpha', 'l1_ratio', 'y', 'r2_test', 'r2_train'])
    row = 0
    for a in alpha:
        for l in l1_ratio:
            sgdr = SGDRegressor(penalty='elasticnet',
                                tol=1e-6,
                                max_iter=params['max_iter'])
            sgdr.set_params(**{'alpha': a, 'l1_ratio': l})
            print('PARAMS alpha: {}, l1_ratio: {}'.format(a, l))
            X_train, X_test, y_train, y_test = train_test_split(X,
                                                                y,
                                                                test_size=0.2,
                                                                random_state=0)
            sgdr.fit(X_train, y_train)
            r2_test = r2_score(y_test, sgdr.predict(X_test))
            r2_train = r2_score(y_train, sgdr.predict(X_train))
            results.loc[row] = [a, l, params['y'], r2_test, r2_train]
            row += 1

    results.to_csv(params['name'])
Пример #3
0
class LinearAprxAgent:
    def create_policy(self, func_approximator, epsilon=0):
        # from lab 8
        def policy_fn(state):
            """
            
            Input:
                state: a 2D array with the position and velocity
            Output:
                A,q_values: 
            """
            action_index = np.ones(self.num_of_actions,
                                   dtype=float) * epsilon / self.num_of_actions

            #transform to the same shape as the model was trained on
            state_transformed = self.feature_transformer.transform([state])
            q_values = self.func_approximator.predict(state_transformed)

            best_action = np.argmax(q_values)
            action_index[best_action] += (1.0 - epsilon)

            return action_index, q_values  # return the potentially stochastic policy (which is due to the exploration)

        return policy_fn  # return a handle to the function so we can call it in the future

    def __init__(self, env):

        #RBF Hyper parameters
        self.SGD_learning_rate = "optimal"  #‘constant’, ‘optimal’, ‘invscaling’, ‘adaptive’
        self.tol = 1e-5  #The stopping criterion
        self.SGD_max_iter = 1e4

        self.func_approximator = SGDRegressor(
            learning_rate=self.SGD_learning_rate,
            tol=self.tol,
            max_iter=self.SGD_max_iter,
            loss='huber')

        self.feature_transformer = sklearn.pipeline.FeatureUnion([
            ("rbf1", RBFSampler(gamma=12.8, n_components=50)),
            ("rbf2", RBFSampler(gamma=6.4, n_components=50)),
            ("rbf3", RBFSampler(gamma=3.2, n_components=50)),
            ("rbf4", RBFSampler(gamma=1.6, n_components=50)),
            ("rbf5", RBFSampler(gamma=0.8, n_components=50)),
            ("rbf6", RBFSampler(gamma=0.4, n_components=50)),
            ("rbf7", RBFSampler(gamma=0.2, n_components=50)),
            ("rbf8", RBFSampler(gamma=0.1, n_components=50))
        ])

        self.num_of_actions = env.action_space.n
        self.env = env
        #function which is the learned function
        self.policy = self.create_policy(self.func_approximator, 1)

        self.episodes = 200
        #         self.print_out_every_x_episodes = int(self.episodes/50)
        self.times_exploited = 0

        # hyper parameters for epsilon explore
        self.initial_epsilon = 1  # initial
        self.decrease_factor = (1 / self.episodes) / 1.25  # epsilon
#         print("Decrease Factor: " + str(self.decrease_factor))

    def train(self):
        states, all_rewards, all_total_rewards = self.run_all_episodes(
            "Training")
        state_transformed = self.feature_transformer.transform(states)

        q_values = self.func_approximator.predict(state_transformed)
        return states, all_rewards, all_total_rewards, self.func_approximator, state_transformed, q_values

    def evaluate(self,
                 intercept,
                 coeff,
                 states_transformed,
                 q_values,
                 last_reward,
                 episodes=100):
        self.func_approximator = SGDRegressor(
            learning_rate=self.SGD_learning_rate,
            tol=self.tol,
            max_iter=self.SGD_max_iter,
            loss='huber')
        self.func_approximator.fit(states_transformed,
                                   last_reward,
                                   coef_init=coeff,
                                   intercept_init=intercept)

        self.episodes = episodes
        self.epsilon = -1000
        states, all_rewards, all_total_rewards = self.run_all_episodes(
            "Evaluation", evaluate=True)
        return states, all_rewards, all_total_rewards

    def run_all_episodes(self, title, evaluate=False):
        all_total_rewards = []
        all_rewards = []
        epsilon = self.initial_epsilon  # at the start only explore

        power = 1
        for episode in range(1, self.episodes + 1):
            states, rewards = self.run_episode(epsilon, evaluate)
            total_reward = np.sum(rewards)

            #             if episode % self.print_out_every_x_episodes == 0:
            #                 print("Episode number: " + str(episode) + ". Total reward in episode: " + str(total_reward) + ". Episode executed with epsilon = " + str(epsilon))
            #                 print("Average total reward in last " + str(self.print_out_every_x_episodes) + " episodes: " + str(np.mean(all_rewards[-self.print_out_every_x_episodes:])))
            #                 print("Times exploited the last episode " + str(self.times_exploited))
            #                 print("-----")
            self.times_exploited = 0
            all_rewards.append(rewards)
            all_total_rewards.append(total_reward)
            if not evaluate:
                epsilon = self.decrease_epsilon(epsilon, power)
            power += 0.10

        #graph with orange smoothed reward
        if not evaluate:
            window_size = int(self.episodes / 10)
            smoothed_rewards = pd.Series(all_total_rewards).rolling(
                window_size, min_periods=window_size).mean()
            this_smoothed_reward = smoothed_rewards.values[-1]
            smooth_plot(all_total_rewards, smoothed_rewards, title)
        return states, all_rewards, all_total_rewards

    #exponential decrease in epsilon
    def decrease_epsilon(self, epsilon, power):
        decrease = 0.005
        return epsilon * ((1 - decrease)**power)

    def run_episode(self, epsilon, evaluate=False):
        rewards = []
        states = []
        actions = []
        done = False

        state = self.env.reset()
        states.append(state)

        while not done:
            random_number = np.random.random()
            if random_number < epsilon:
                #explore
                action = np.random.choice(self.num_of_actions)
            else:
                #exploit
                action = self.get_action(state)
                self.times_exploited += 1

            new_state, reward, done, i = self.env.step(action=action)

            states.append(new_state)
            actions.append(action)
            rewards.append(reward)

            if not evaluate:
                #update policy function
                self.update(states[1:], rewards, epsilon)

            state = new_state

        return states, rewards

    def update(self, states, rewards, epsilon):

        #update the linear function
        self.feature_transformer.fit(states)
        states_transformed = self.feature_transformer.transform(states)

        self.func_approximator.fit(states_transformed, rewards)
        self.policy = self.create_policy(self.func_approximator, 0)

    def get_action(self, state):
        #linear function to get best action
        actions, q_values = self.policy(state)
        return np.argmax(actions)

    def get_action_text(self):
        return action_text

    def get_env(self):
        return env

    def get_chart_title(self):
        return "Action = " + action_text

    def get_weights(self):
        return self.func_approximator.get_params()

    def set_params(self, coef, intercept):
        self.func_approximator.set_params(weights.get_items())
Пример #4
0
alpha = [0.1, 0.5, 1.0] 
l1_ratio = [1e-3, 0.1,  0.4,  1]

sgdr = SGDRegressor(penalty='elasticnet', tol = 1e-3)
rs = ShuffleSplit(n_splits=3, test_size=0.2, random_state=0)




results = pd.DataFrame(columns=['alpha', 'l1_ratio', 'edge', 'mean_test', 'mean_train'])
row = 0
for a in alpha:
    for l in l1_ratio:
        sgdr = SGDRegressor(penalty='elasticnet', tol = 1e-6)
        sgdr.set_params(**{'alpha':a, 'l1_ratio': l})
        print('PARAMS alpha: {}, l1_ratio: {}'.format(a, l))
        for i in sorted(c):
            print('FOR EDGE NUMBER ' + str(i))
            r2_test, r2_train = [], []
            
            for train_index, test_index in rs.split(X):
                X_train, y_train = X[train_index], Y[train_index, i]
                X_test, y_test = X[test_index], Y[test_index, i]
                sgdr.fit(X_train, y_train)
                r2_train += [sgdr.score(X_train, y_train)]
                r2_test += [sgdr.score(X_test, y_test)]
                print('R2 train: {}, test: {}'.format(r2_train[-1], r2_test[-1]))
            print('MEAN R2 TRAIN: {}, TEST: {}'.format(np.mean(r2_train), np.mean(r2_test)))
    results.loc[row] = [a, l, i, np.mean(r2_test), np.mean(r2_train)]
    row += 1
Пример #5
0
class ModelLookup():
    def __init__(self, model_type, target_col):
        self.model_type = model_type
        self.target_col = target_col
        self.get_model()

    def get_model(self):
        '''each lookup entry MUST set:
            - model_name
            - tuning_metric
            - best_params
           Optional, if you want to do param tuning:
            - param space
            - objective_function'''

        lookup_dict = {
            'xgboost': self.get_xgboost,
            'reg_linear': self.get_reg_linear,
            'lightgbm': self.get_lightgbm
        }

        if self.model_type not in lookup_dict.keys():
            raise ValueError('No ModelLookup entry defined for ' +
                             self.model_type)

        lookup_dict[self.model_type]()

    def get_xgboost(self):
        # ----------------
        # base model attrs
        # ----------------

        self.model_name = 'xgboost_model_' + pd.to_datetime('today').strftime(
            '%Y-%m-%d')
        # self.cores = hf.detect_cores() - 2

        if is_bool_dtype(self.target_col):
            objective = 'binary:logistic'
            self.tuning_metric = 'roc_auc'
            self.model = xgb.XGBClassifier()
            # self.tuning_metric = 'f1'
        elif is_numeric_dtype(self.target_col):
            objective = 'reg:linear'
            self.tuning_metric = 'neg_mean_squared_error'
            self.model = xgb.XGBRegressor()
        elif is_string_dtype(self.target_col):
            objective = 'multi:softprob'
            num_class = len(pd.unique(self.target_col))

            self.tuning_metric = 'accuracy'
            self.target_lookup = pd.Categorical(self.target_col)
            self.target_col = self.target_lookup.codes
            self.model = xgb.XGBClassifier()
        else:
            print('some sort of error')

        self.best_params = {
            'base_score': 0.5,
            'booster': 'gbtree',
            'colsample_bylevel': 1,
            'colsample_bytree': 0.61993666911880152,
            'gamma': 3.5007109366333236,
            'learning_rate': 0.042247990716033385,
            'max_delta_step': 0,
            'max_depth': 9,
            'min_child_weight': 5,
            'missing': None,
            'n_estimators': 124,
            'n_jobs': -1,
            'nthread': -1,
            'objective': objective,
            'random_state': 0,
            'reg_alpha': 0,
            'reg_lambda': 9,
            'scale_pos_weight': 1,
            'seed': 0,
            'silent': True,
            'subsample': 1
        }

        try:
            self.model.set_params(num_class=num_class)
        except:
            pass

        # ------------------
        # model tuning attrs
        # ------------------

        self.param_space = {
            'base_score': [0.5],
            'max_depth': (5, 10),
            'n_estimators': (50, 125),
            'learning_rate': (0.01, .3),
            'min_child_weight': (1, 50),
            'gamma': (0, 5.0),
            'colsample_bytree': (0.50, .999),
            'reg_alpha': (0, 5),
            'reg_lambda': (0, 10),
            'subsample': (.2, 1)
        }
        self.objective_function = hf.xgb_objective

    def get_reg_linear(self):
        # ----------------
        # base model attrs
        # ----------------

        self.model_name = 'linear_model_' + pd.to_datetime('today').strftime(
            '%Y-%m-%d')
        # self.cores = hf.detect_cores() - 2

        if is_bool_dtype(self.target_col):
            loss = 'log'
            self.tuning_metric = 'roc_auc'
            self.model = SGDClassifier()
            # self.tuning_metric = 'f1'
        elif is_numeric_dtype(self.target_col):
            loss = 'squared_loss'
            self.tuning_metric = 'neg_mean_squared_error'
            self.model = SGDRegressor()
            # self.tuning_metric = 'neg_mean_absolute_error'

        self.best_params = {
            'alpha': 0.0001,
            'average': False,
            'class_weight': None,
            'epsilon': 0.1,
            'eta0': 0.0,
            'fit_intercept': True,
            'l1_ratio': 0.15,
            'learning_rate': 'optimal',
            'loss': loss,
            'max_iter': 1000,
            'n_iter': None,
            'n_jobs': -1,
            'penalty': 'elasticnet',
            'power_t': 0.5,
            'random_state': None,
            'shuffle': True,
            'tol': 0.001,
            'verbose': 0,
            'warm_start': False
        }

        # ------------------
        # model tuning attrs
        # ------------------

        self.param_space = {'alpha': (0.0001, 3), 'l1_ratio': (0, 1.0)}
        self.objective_function = hf.reg_linear_objective

    def get_lightgbm(self):
        # ----------------
        # base model attrs
        # ----------------

        self.model_name = 'lightgbm_model_' + pd.to_datetime('today').strftime(
            '%Y-%m-%d')
        # self.cores = hf.detect_cores() - 2

        if is_bool_dtype(self.target_col):
            objective = 'binary'
            self.tuning_metric = 'roc_auc'
            self.model = lgbm.LGBMClassifier()
            # self.tuning_metric = 'f1'
        elif is_numeric_dtype(self.target_col):
            objective = 'regression'
            self.tuning_metric = 'neg_mean_squared_error'
            self.model = lgbm.LGBMRegressor()
        elif is_string_dtype(self.target_col):
            objective = 'multiclass'
            num_class = len(pd.unique(self.target_col))

            self.tuning_metric = 'accuracy'
            self.target_lookup = pd.Categorical(self.target_col)
            self.target_col = pd.Series(self.target_lookup.codes)
            self.model = lgbm.LGBMRegressor()
            # self.tuning_metric = 'neg_mean_absolute_error'

        self.best_params = {
            'boosting_type': 'gbdt',
            'class_weight': None,
            'colsample_bytree': 1.0,
            'learning_rate': 0.1,
            'max_depth': -1,
            'min_child_samples': 20,
            'min_child_weight': 0.001,
            'min_split_gain': 0.0,
            'n_estimators': 100,
            'n_jobs': -1,
            'num_leaves': 31,
            'objective': objective,
            'random_state': None,
            'reg_alpha': 0.0,
            'reg_lambda': 0.0,
            'silent': True,
            'subsample': 1.0,
            'subsample_for_bin': 200000,
            'subsample_freq': 1
        }

        try:
            self.model.set_params(num_class=num_class)
        except:
            pass

        # ------------------
        # model tuning attrs
        # ------------------

        self.param_space = {
            'max_depth': (5, 10),
            'n_estimators': (50, 125),
            'learning_rate': (0.01, .3),
            'min_child_weight': (0.01, 20),
            'min_split_gain': (0.0, 0.1),
            'colsample_bytree': (0.50, .999),
            'reg_alpha': (0, 5),
            'reg_lambda': (0, 10),
            'subsample': (.2, 1)
        }
        self.objective_function = hf.lgbm_objective