Пример #1
0
def test_multimetric_scorer_calls_method_once(scorers, expected_predict_count,
                                              expected_predict_proba_count,
                                              expected_decision_func_count):
    X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])

    mock_est = Mock()
    fit_func = Mock(return_value=mock_est)
    predict_func = Mock(return_value=y)

    pos_proba = np.random.rand(X.shape[0])
    proba = np.c_[1 - pos_proba, pos_proba]
    predict_proba_func = Mock(return_value=proba)
    decision_function_func = Mock(return_value=pos_proba)

    mock_est.fit = fit_func
    mock_est.predict = predict_func
    mock_est.predict_proba = predict_proba_func
    mock_est.decision_function = decision_function_func

    scorer_dict, _ = _check_multimetric_scoring(LogisticRegression(), scorers)
    multi_scorer = _MultimetricScorer(**scorer_dict)
    results = multi_scorer(mock_est, X, y)

    assert set(scorers) == set(results)  # compare dict keys

    assert predict_func.call_count == expected_predict_count
    assert predict_proba_func.call_count == expected_predict_proba_count
    assert decision_function_func.call_count == expected_decision_func_count
Пример #2
0
def test_multimetric_scorer_sanity_check():
    # scoring dictionary returned is the same as calling each scorer seperately
    scorers = {
        'a1': 'accuracy',
        'a2': 'accuracy',
        'll1': 'neg_log_loss',
        'll2': 'neg_log_loss',
        'ra1': 'roc_auc',
        'ra2': 'roc_auc'
    }

    X, y = make_classification(random_state=0)

    clf = DecisionTreeClassifier()
    clf.fit(X, y)

    scorer_dict, _ = _check_multimetric_scoring(clf, scorers)
    multi_scorer = _MultimetricScorer(**scorer_dict)

    result = multi_scorer(clf, X, y)

    seperate_scores = {
        name: get_scorer(name)(clf, X, y)
        for name in ['accuracy', 'neg_log_loss', 'roc_auc']
    }

    for key, value in result.items():
        score_name = scorers[key]
        assert_allclose(value, seperate_scores[score_name])
Пример #3
0
def test_multimetric_scorer_sanity_check():
    # scoring dictionary returned is the same as calling each scorer separately
    scorers = {
        "a1": "accuracy",
        "a2": "accuracy",
        "ll1": "neg_log_loss",
        "ll2": "neg_log_loss",
        "ra1": "roc_auc",
        "ra2": "roc_auc",
    }

    X, y = make_classification(random_state=0)

    clf = DecisionTreeClassifier()
    clf.fit(X, y)

    scorer_dict = _check_multimetric_scoring(clf, scorers)
    multi_scorer = _MultimetricScorer(**scorer_dict)

    result = multi_scorer(clf, X, y)

    separate_scores = {
        name: get_scorer(name)(clf, X, y)
        for name in ["accuracy", "neg_log_loss", "roc_auc"]
    }

    for key, value in result.items():
        score_name = scorers[key]
        assert_allclose(value, separate_scores[score_name])
Пример #4
0
def _score_weighted(estimator, x_test, y_test, scorer, sample_weights=None):
    """Expand :func:`sklearn.model_selection._validation._score`."""
    if isinstance(scorer, dict):
        # will cache method calls if needed. scorer() returns a dict
        scorer = _MultimetricScorer(**scorer)
    if y_test is None:
        scores = scorer(estimator, x_test, sample_weight=sample_weights)
    else:
        scores = scorer(estimator,
                        x_test,
                        y_test,
                        sample_weight=sample_weights)

    error_msg = ("scoring must return a number, got %s (%s) "
                 "instead. (scorer=%s)")
    if isinstance(scores, dict):
        for name, score in scores.items():
            if hasattr(score, 'item'):
                with suppress(ValueError):
                    # e.g. unwrap memmapped scalars
                    score = score.item()
            if not isinstance(score, numbers.Number):
                raise ValueError(error_msg % (score, type(score), name))
            scores[name] = score
    else:  # scalar
        if hasattr(scores, 'item'):
            with suppress(ValueError):
                # e.g. unwrap memmapped scalars
                scores = scores.item()
        if not isinstance(scores, numbers.Number):
            raise ValueError(error_msg % (scores, type(scores), scorer))
    return scores
Пример #5
0
def _skl_score(estimator, X_test, y_test, scorer):
    """Compute the score(s) of an estimator on a given test set.
    Will return a dict of floats if `scorer` is a dict, otherwise a single
    float is returned.
    """
    if isinstance(scorer, dict):
        # will cache method calls if needed. scorer() returns a dict
        scorer = _MultimetricScorer(**scorer)
    if y_test is None:
        scores = scorer(estimator, X_test)
    else:
        scores = scorer(estimator, X_test, y_test)

    error_msg = ("scoring must return a number, got %s (%s) "
                 "instead. (scorer=%s)")
    if isinstance(scores, dict):
        for name, score in scores.items():
            if hasattr(score, "item"):
                with suppress(ValueError):
                    # e.g. unwrap memmapped scalars
                    score = score.item()
            if not isinstance(score, numbers.Number):
                raise ValueError(error_msg % (score, type(score), name))
            scores[name] = score
    else:  # scalar
        if hasattr(scores, "item"):
            with suppress(ValueError):
                # e.g. unwrap memmapped scalars
                scores = scores.item()
        if not isinstance(scores, numbers.Number):
            raise ValueError(error_msg % (scores, type(scores), scorer))
    return scores
Пример #6
0
    def scoring(self, scoring):

        # Scorer
        scoring = _check_multimetric_scoring(self.estimator, scoring)

        # IF scoring is a tuple (older versions of scikit-learn), we take only the first element
        if isinstance(scoring, tuple):
            scoring = scoring[0]  # This is a dict of scorers

        self._scoring_dict = scoring

        # Make it efficient
        scoring = _MultimetricScorer(
            **scoring
        )  # This is a single function returning a dict (with the metrics)
        self._scoring = scoring
Пример #7
0
def test_multimetric_scorer_calls_method_once_regressor_threshold():
    predict_called_cnt = 0

    class MockDecisionTreeRegressor(DecisionTreeRegressor):
        def predict(self, X):
            nonlocal predict_called_cnt
            predict_called_cnt += 1
            return super().predict(X)

    X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])

    # no decision function
    clf = MockDecisionTreeRegressor()
    clf.fit(X, y)

    scorers = {'neg_mse': 'neg_mean_squared_error', 'r2': 'roc_auc'}
    scorer_dict, _ = _check_multimetric_scoring(clf, scorers)
    scorer = _MultimetricScorer(**scorer_dict)
    scorer(clf, X, y)

    assert predict_called_cnt == 1
Пример #8
0
def test_multimetric_scorer_calls_method_once_classifier_no_decision():
    predict_proba_call_cnt = 0

    class MockKNeighborsClassifier(KNeighborsClassifier):
        def predict_proba(self, X):
            nonlocal predict_proba_call_cnt
            predict_proba_call_cnt += 1
            return super().predict_proba(X)

    X, y = np.array([[1], [1], [0], [0], [0]]), np.array([0, 1, 1, 1, 0])

    # no decision function
    clf = MockKNeighborsClassifier(n_neighbors=1)
    clf.fit(X, y)

    scorers = ['roc_auc', 'neg_log_loss']
    scorer_dict, _ = _check_multimetric_scoring(clf, scorers)
    scorer = _MultimetricScorer(**scorer_dict)
    scorer(clf, X, y)

    assert predict_proba_call_cnt == 1
Пример #9
0
    def fit(self, estimator, x, y=None, sample_weight=None):
        x = check_array(x, allow_multivariate=False)
        y = check_array(y, ensure_2d=False)
        random_state = check_random_state(self.random_state)
        if x.shape[0] != y.shape[0]:
            raise ValueError(
                "expected the same number of samples (%d) and labels (%d)"
                % (x.shape[0], y.shape[0])
            )

        if self.n_interval == "sqrt":
            n_interval = math.ceil(math.sqrt(x.shape[-1]))
        elif self.n_interval == "log":
            n_interval = math.ceil(math.log2(x.shape[-1]))
        elif isinstance(self.n_interval, numbers.Integral):
            n_interval = self.n_interval
        elif isinstance(self.n_interval, numbers.Real):
            if not 0 < self.n_interval <= 1:
                raise ValueError(
                    "n_interval (%r) not in range [0, 1[" % self.n_interval
                )
            n_interval = math.floor(x.shape[-1] * self.n_interval)
        else:
            raise ValueError("unsupported n_interval, got %r" % self.n_interval)

        if callable(self.scoring):
            scoring = self.scoring
        elif self.scoring is None or isinstance(self.scoring, str):
            scoring = check_scoring(estimator, self.scoring)
        else:
            scoring_dict = _check_multimetric_scoring(estimator, self.scoring)
            scoring = _MultimetricScorer(**scoring_dict)

        if isinstance(self.domain, str):
            self.domain_ = _PERMUTATION_DOMAIN.get(self.domain, None)()
            if self.domain_ is None:
                raise ValueError("domain (%s) is not supported" % self.domain)
        else:
            self.domain_ = self.domain

        x_transform = self.domain_.transform(x=x)
        self.intervals_ = list(
            self.domain_.intervals(x_transform.shape[-1], n_interval)
        )
        scores = []
        for iter, (start, end) in enumerate(self.intervals_):
            if self.verbose:
                print(
                    f"Running iteration {iter + 1} of "
                    f"{len(self.intervals_)}. {start}:{end}"
                )
            x_perm_transform = x_transform.copy()
            rep_scores = []
            for rep in range(self.n_repeat):
                self.domain_.randomize(
                    x_perm_transform, start, end, random_state=random_state
                )
                x_perm_inverse = self.domain_.inverse_transform(x_perm_transform)
                if sample_weight is not None:
                    score = scoring(
                        estimator, x_perm_inverse, y, sample_weight=sample_weight
                    )
                else:
                    score = scoring(estimator, x_perm_inverse, y)
                rep_scores.append(score)

            if isinstance(rep_scores[0], dict):
                scores.append(_aggregate_score_dicts(rep_scores))
            else:
                scores.append(rep_scores)

        if sample_weight is not None:
            self.baseline_score_ = scoring(estimator, x, y, sample_weight=sample_weight)
        else:
            self.baseline_score_ = scoring(estimator, x, y)

        if self.verbose:
            print(f"Baseline score is: {self.baseline_score_}")

        if isinstance(self.baseline_score_, dict):
            self.importances_ = {
                name: _unpack_scores(
                    self.baseline_score_[name],
                    np.array([scores[i][name] for i in range(n_interval)]),
                )
                for name in self.baseline_score_
            }
        else:
            self.importances_ = _unpack_scores(self.baseline_score_, np.array(scores))
        return self