Пример #1
0
def _multi_target_sk_metric(preds, target, adjusted, multioutput):
    sk_preds = preds.view(-1, num_targets).numpy()
    sk_target = target.view(-1, num_targets).numpy()
    r2_score = sk_r2score(sk_target, sk_preds, multioutput=multioutput)
    if adjusted != 0:
        r2_score = 1 - (1 - r2_score) * (sk_preds.shape[0] - 1) / (sk_preds.shape[0] - adjusted - 1)
    return r2_score
Пример #2
0
def _multi_target_sk_r2score(preds,
                             target,
                             adjusted=0,
                             multioutput="raw_values"):
    """Compute R2 score over multiple outputs."""
    sk_preds = preds.view(-1, num_targets).numpy()
    sk_target = target.view(-1, num_targets).numpy()
    r2_score = sk_r2score(sk_target, sk_preds, multioutput=multioutput)
    if adjusted != 0:
        r2_score = 1 - (1 - r2_score) * (sk_preds.shape[0] - 1) / (
            sk_preds.shape[0] - adjusted - 1)
    return r2_score