def __init__(self, method='yeo-johnson', standardize=True, copy=True): self._hyperparams = { 'method': method, 'standardize': standardize, 'copy': copy } self._wrapped_model = SKLModel(**self._hyperparams)
def fit(self, X, y=None): self._sklearn_model = SKLModel(**self._hyperparams) if (y is not None): self._sklearn_model.fit(X, y) else: self._sklearn_model.fit(X) return self
def __init__(self, with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True): self._hyperparams = { 'with_centering': with_centering, 'with_scaling': with_scaling, 'quantile_range': quantile_range, 'copy': copy } self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, n_quantiles=1000, output_distribution='uniform', ignore_implicit_zeros=False, subsample=100000, random_state=None, copy=True): self._hyperparams = { 'n_quantiles': n_quantiles, 'output_distribution': output_distribution, 'ignore_implicit_zeros': ignore_implicit_zeros, 'subsample': subsample, 'random_state': random_state, 'copy': copy } self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, threshold=0.0, copy=True): self._hyperparams = {'threshold': threshold, 'copy': copy} self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, norm='l2', copy=True): self._hyperparams = {'norm': norm, 'copy': copy} self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, copy=True): self._hyperparams = {'copy': copy} self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, degree=2, interaction_only=False, include_bias=True): self._hyperparams = { 'degree': degree, 'interaction_only': interaction_only, 'include_bias': include_bias} self._wrapped_model = SKLModel(**self._hyperparams)
def __init__(self, feature_range=(0, 1), copy=True): self._hyperparams = { 'feature_range': feature_range, 'copy': copy} self._wrapped_model = SKLModel(**self._hyperparams)