Пример #1
0
    def _transform(self, X, handle_unknown='error'):
        X = self._check_X(X)

        _, n_features = X.shape
        X_int = np.zeros_like(X, dtype=np.int)
        X_mask = np.ones_like(X, dtype=np.bool)

        for i in range(n_features):
            Xi = X[:, i]
            diff, valid_mask = _encode_check_unknown(Xi, self.categories_[i],
                                                     return_mask=True)

            if not np.all(valid_mask):
                if handle_unknown == 'error':
                    msg = ("Found unknown categories {0} in column {1}"
                           " during transform".format(diff, i))
                    raise ValueError(msg)
                else:
                    # Set the problematic rows to an acceptable value and
                    # continue `The rows are marked `X_mask` and will be
                    # removed later.
                    X_mask[:, i] = valid_mask
                    Xi = Xi.copy()
                    Xi[~valid_mask] = self.categories_[i][0]
            _, encoded = _encode(Xi, self.categories_[i], encode=True)
            X_int[:, i] = encoded

        return X_int, X_mask
Пример #2
0
    def transform(self, y):
        """Transform labels to normalized encoding.

        If ``self.fill_unseen_labels`` is ``True``, use ``self.fill_encoded_label_value`` for unseen values.
        Seen labels are encoded with value between 0 and n_classes-1.  Unseen labels are encoded with
        ``self.fill_encoded_label_value`` with a default value of n_classes.

        Parameters
        ----------
        y : array-like of shape [n_samples]
            Label values.

        Returns
        -------
        y_encoded : array-like of shape [n_samples]
                    Encoded label values.
        """
        check_is_fitted(self, "classes_")
        y = column_or_1d(y, warn=True)

        # transform of empty array is empty array
        if _num_samples(y) == 0:
            return np.array([])

        if self.fill_unseen_labels:
            _, mask = _encode_check_unknown(y, self.classes_, return_mask=True)
            y_encoded = np.searchsorted(self.classes_, y)
            fill_encoded_label_value = self.fill_encoded_label_value or len(
                self.classes_)
            y_encoded[~mask] = fill_encoded_label_value
        else:
            _, y_encoded = _encode(y, uniques=self.classes_, encode=True)

        return y_encoded
Пример #3
0
    def _fit(self, X, handle_unknown='error'):
        X = self._check_X(X)

        n_samples, n_features = X.shape

        if self._categories != 'auto':
            if X.dtype != object:
                for cats in self._categories:
                    if not np.all(np.sort(cats) == np.array(cats)):
                        raise ValueError("Unsorted categories are not "
                                         "supported for numerical categories")
            if len(self._categories) != n_features:
                raise ValueError("Shape mismatch: if n_values is an array,"
                                 " it has to be of shape (n_features,).")

        self.categories_ = []

        for i in range(n_features):
            Xi = X[:, i]
            if self._categories == 'auto':
                cats = _encode(Xi)
            else:
                cats = np.array(self._categories[i], dtype=X.dtype)
                if handle_unknown == 'error':
                    diff = _encode_check_unknown(Xi, cats)
                    if diff:
                        msg = ("Found unknown categories {0} in column {1}"
                               " during fit".format(diff, i))
                        raise ValueError(msg)
            self.categories_.append(cats)