Пример #1
0
    def choose_rep(self):
        """Choses representative subject to be used as target for BrainSync"""
        nsub = len(self.subids)
        subs = range(nsub)
        dist_mat = np.zeros((nsub, nsub))

        for sub1no, sub2no in itertools.product(subs, subs):
            sub1 = self.fmri_data[sub1no]
            sub2 = self.fmri_data[sub2no]
            sub1 = StandardScaler().fit_transform(sub1.T)
            sub2 = StandardScaler().fit_transform(sub2.T)  # .T to make it TxV
            sub2s, _ = brainSync(sub1, sub2)
            dist_mat[sub1no, sub2no] = np.linalg.norm(sub1.flatten() -
                                                      sub2s.flatten())
            print(sub1no, sub2no)

        self.ref_subno = np.argmin(np.sum(dist_mat, axis=1))
        self.ref_data = self.fmri_data[self.ref_subno]

        # Save the reference subject and ref subject data
        np.savez_compressed(
            self.data_dir_fmri + '/processed/Refdata.npz',
            ref_data=self.ref_data,
            ref_subno=self.ref_subno)

        print('The most representative subject is %d' % self.ref_subno)
Пример #2
0
def sample_data(country):
    population = df.loc[(df.Country == country) & (df.New_deaths > 0),
                        ['Date_reported', 'New_deaths']]
    after = population.loc[(population.Date_reported >= '2020-12-08 ') &
                           (population.Date_reported <= today), ['New_deaths']]
    values = after.values
    values = values.reshape((len(values), 1))
    scaled_features = StandardScaler().fit_transform(values)
    scaled_features = scaled_features.flatten()
    return scaled_features
Пример #3
0
def population_data(country):
    from sklearn.preprocessing import StandardScaler
    from math import sqrt
    population = df.loc[(df.Country == country) & (df.New_deaths > 0),
                        ['New_deaths']]
    values = population.values
    values = values.reshape((len(values), 1))
    scaled_features = StandardScaler().fit_transform(values)
    scaled_features = scaled_features.flatten()
    return scaled_features
Пример #4
0
normalizeFeatures = 'Mean'
if normalizeFeatures == 'MeanAndStd':
    X_std = StandardScaler().fit_transform(vecPosMatrix)
elif normalizeFeatures == 'Mean':
    X_std = vecPosMatrix - np.mean(vecPosMatrix,0)

print "Making sklearn_pca"
nComponents = 10
sklearn_pca = sklearnPCA(n_components=nComponents)
print "Making Y_sklearn"

# An important note -- we get a hash value for the raw data here
# as a unique identifier of this dataset. Then we save the initial
# PCA object to disk to reduce time on subsequent runs.

sklearn_pca_hash = str(hash(tuple(X_std.flatten()[::100])))[-10:]
#pca_result_hash = 'y_sklearn_hash_%s.cpickle' %(sklearn_pca_hash)
pca_result_hash = 'pca_obj_hash_%s.cpickle' %(sklearn_pca_hash)
if not(os.path.exists(pca_result_hash)):
    #Y_sklearn = sklearn_pca.fit_transform(X_std)
    sklearn_pca.fit(X_std)
    with open(pca_result_hash,'wb') as of:
        cPickle.dump(sklearn_pca, of)
    Y_sklearn = sklearn_pca.transform(X_std)
    #with open(pca_result_hash,'wb') as of:
    #    cPickle.dump(Y_sklearn, of)
else:
    #Y_sklearn = cPickle.load(open(pca_result_hash))
    sklearn_pca = cPickle.load(open(pca_result_hash))
    Y_sklearn = sklearn_pca.transform(X_std)
Пример #5
0
normalizeFeatures = 'Mean'
if normalizeFeatures == 'MeanAndStd':
    X_std = StandardScaler().fit_transform(vecPosMatrix)
elif normalizeFeatures == 'Mean':
    X_std = vecPosMatrix - np.mean(vecPosMatrix, 0)

print("Making sklearn_pca")
nComponents = 10
sklearn_pca = sklearnPCA(n_components=nComponents)
print("Making Y_sklearn")

# An important note -- we get a hash value for the raw data here
# as a unique identifier of this dataset. Then we save the initial
# PCA object to disk to reduce time on subsequent runs.

sklearn_pca_hash = str(hash(tuple(X_std.flatten()[::100])))[-10:]
#pca_result_hash = 'y_sklearn_hash_%s.cpickle' %(sklearn_pca_hash)
pca_result_hash = 'pca_obj_hash_%s.cpickle' % (sklearn_pca_hash)
if not (os.path.exists(pca_result_hash)):
    #Y_sklearn = sklearn_pca.fit_transform(X_std)
    sklearn_pca.fit(X_std)
    with open(pca_result_hash, 'wb') as of:
        pickle.dump(sklearn_pca, of)
    Y_sklearn = sklearn_pca.transform(X_std)
    #with open(pca_result_hash,'wb') as of:
    #    cPickle.dump(Y_sklearn, of)
else:
    #Y_sklearn = cPickle.load(open(pca_result_hash))
    sklearn_pca = pickle.load(open(pca_result_hash))
    Y_sklearn = sklearn_pca.transform(X_std)
Пример #6
0
 def standardized(v_lst):
     df = pd.DataFrame({'val': v_lst})
     df.fillna(df.mean(), inplace=True)
     v_lst = StandardScaler().fit_transform(df['val'].values.reshape(-1, 1))
     v_lst = v_lst.flatten()
     return list(v_lst)
Пример #7
0
def TsExtractor(labels,
                labelmap,
                func,
                mask,
                global_signal=True,
                pca=False,
                outfile="reg_timeseries.tsv",
                outlabelmap="individual_gm_labelmap.nii.gz"):

    import nibabel as nib
    import pandas as pd
    import numpy as np

    func_data = nib.load(func).get_data()
    labelmap_data = nib.load(labelmap).get_data()
    mask_data = nib.load(mask).get_data()

    labelmap_data[mask_data == 0] = 0  # background

    outlab = nib.Nifti1Image(labelmap_data, nib.load(labelmap).affine)
    nib.save(outlab, outlabelmap)

    ret = []

    if global_signal:
        indices = np.argwhere(mask_data > 0)
        X = []
        for i in indices:
            x = func_data[i[0], i[1], i[2], :]
            if np.std(x) > 0.000001:
                X.append(x.tolist())
        if len(X) == 0:
            x = np.repeat(0, func_data.shape[3])
        elif pca:
            import sklearn.decomposition as decomp
            from sklearn.preprocessing import StandardScaler
            X = StandardScaler().fit_transform(np.transpose(X))
            PCA = decomp.PCA(n_components=1, svd_solver="arpack")
            x = PCA.fit_transform(X).flatten()
        else:
            #from sklearn.preprocessing import StandardScaler
            #X = StandardScaler().fit_transform(np.transpose(X))
            x = np.mean(X, axis=0)
        ret.append(x)

    for l in range(1, len(labels) + 1):
        indices = np.argwhere(labelmap_data == l)
        X = []
        for i in indices:
            x = func_data[i[0], i[1], i[2], :]
            if np.std(x) > 0.000001:
                X.append(x.tolist())
        X = np.array(X)
        if X.shape[0] == 0:
            x = np.repeat(0, func_data.shape[3])
        elif X.shape[0] == 1:
            x = X.flatten()
        elif pca:
            import sklearn.decomposition as decomp
            from sklearn.preprocessing import StandardScaler
            X = StandardScaler().fit_transform(np.transpose(X))
            PCA = decomp.PCA(n_components=1, svd_solver="arpack")
            x = PCA.fit_transform(X).flatten()
        else:
            #from sklearn.preprocessing import StandardScaler
            #X = StandardScaler().fit_transform(np.transpose(X))
            x = np.mean(X, axis=0)
        ret.append(x)

    ret = np.transpose(np.array(ret))

    if global_signal:
        labels = ["GlobSig"] + labels

    import pandas as pd
    ret = pd.DataFrame(data=ret, columns=labels)

    ret.to_csv(outfile, sep="\t", index=False)

    import os
    return os.path.join(os.getcwd(),
                        outfile), labels, os.path.join(os.getcwd(),
                                                       outlabelmap)