Пример #1
0
def train_and_test(svm,datasets):

    testset = datasets['testset']
    finaltrainset = datasets['finaltrainset']
    svm.train(finaltrainset)
    outputs, costs = svm.test(testset)
    

    id_to_class = {}
    for label, id in testset.class_to_id.iteritems():
        id_to_class[id] = label
        
     # Ground truth
    lbl = datasets['ground_truth'] 
    auto_lbl = np.array([int(id_to_class[output[0]]) for output in outputs]) # Predicted labels

    len_bg = testset.metadata['len_bg']
    lbl = np.append(lbl, [0]*len_bg)
    auto_lbl = np.append(auto_lbl, [0]*len_bg)
    
    (dice, jaccard, precision, recall) = compute_statistics.compute_eval_multilabel_metrics(auto_lbl, lbl)
    dice = dice[~np.isnan(dice)]
    return dice.mean()
Пример #2
0
def main():
    svm = SVM(C=100000, fraction_split=0.7)
    svm.load_dataset()

    accuracies = []
    f1s = []
    num_splits = int(sys.argv[2])

    kf = KFold(n_splits=num_splits)
    split_num = 1

    for training_indices, testing_indices in kf.split(svm.dataset):
        print("Split {}/{}".format(split_num, num_splits))
        svm.update_train_and_test_sets(training_indices, testing_indices)
        svm.train()
        accuracy, f1 = svm.test()

        accuracies.append(accuracy)
        f1s.append(f1)

        split_num += 1

    return stats.mean(accuracies), stats.mean(f1s)
def train(target, labels):
    # First half is trainData, remaining is testData
    train_cells = target
    ######     Now training      ########################
    deskewed = [map(deskew, row) for row in train_cells]
    hogdata = [map(hog, row) for row in deskewed]
    trainData = np.float32(hogdata).reshape(-1, 64)
    print(trainData.shape)
    #response is array of n * 1, i.e. [[1],[2],[3]...]
    responses = np.float32(labels)[:, np.newaxis]
    svm = cv2.SVM()
    svm.train(trainData, responses, params=svm_params)
    #svm.save('svm_data.dat')

    ######     Now testing      ########################
    deskewed = [map(deskew, row) for row in train_cells]
    hogdata = [map(hog, row) for row in deskewed]
    testData = np.float32(hogdata).reshape(-1, bin_n * 4)
    result = svm.predict_all(testData)
    #print(len(result))
    #print(len(responses))
    #print(type(result))
    #print(result.size)
    #print(responses)
    '''for d in testData:
        svm.predict(d)
        print(svm.get_var_count())'''
    #######   Check Accuracy   ########################
    mask = result == responses

    #for c in result:
    #    print(chr(c + ord('A')))
    mask = mask.astype(np.uint8)
    #print(mask)
    correct = np.count_nonzero(mask)
    #print(correct)
    print(correct * 100.0 / result.size)
Пример #4
0
def trainTestSvm(data,labels,lblvec,B,L,T,split = 0.8,initializer = np.zeros,use_bias = True,kernel = None):
    
    #sectioning data into only two labels and shuffling them
    data1,data2 = getData(data,labels,lblvec)
    label1,label2 = np.ones([data1.shape[0],1])*1,np.ones([data2.shape[0],1])*-1
    data12 = np.concatenate((data1,data2))
    label12 = np.concatenate((label1,label2))
    perm = np.random.permutation(data12.shape[0])
    data12 = data12[perm]
    label12 = label12[perm]
    
    #split into training and testing datasets
    sp = int(split * data12.shape[0])
    train,trainlbl,test,testlbl = data12[:sp],label12[:sp],data12[sp:],label12[sp:]
    
    #create and train the svm on the training set
    svm = pegasos_solver()
    bias = initializer([1]) if use_bias else None
    svm.init(train,trainlbl,initializer([1,data12.shape[1]]),bias)
    
    #train and test the svm either with primal subgradient descent or mercer kernels 
    if kernel is None:
        errs = svm.train(B,L,T)
        tres = svm.predict(test)
    else:
        svm.kernelTrain(L,T,kernel)
        tres = svm.predictKernel(kernel,test)
        
    tp,fp,tn,fn = 0,0,0,0
    for i,j in zip(tres,testlbl):
        if i > 0:
            if j > 0:
                tp += 1
            else:
                fp += 1
        else:
            if j < 0:
                tn += 1
            else:
                fn += 1
          
    print("Accuracy",(tp + tn)/(tres.shape[0]),"TPR",tp/(tp + fn),           "FPR",fp/(tn + fp))
    return (tp + tn)/(tres.shape[0])
Пример #5
0
    # 获取当前时间
    start = time.time()

    # 读取训练文件
    print('load TrainData')
    X_train, y_train = loadData('./mnist/mnist_train.csv')

    # 读取测试文件
    print('load TestData')
    X_test, y_test = loadData('./mnist/mnist_test.csv')

    print('Init SVM classifier')
    svm=SVM(X_train[0:6000],y_train[0:6000])

    print('start to train')
    svm.train()

    print('start to test')
    svm.test(X_test[0:400], y_test[0:400])
    # clf = svm.SVC()
    # clf.fit(X_train[0:6000],y_train[0:6000])
    # print(clf.score(X_test[0:400], y_test[0:400]))
    # 获取结束时间
    end = time.time()

    print('run time:', end - start)




Пример #6
0
    if 'sad' in j:
        L.append(1)
    if 'angry' in j:
        L.append(2)
    if 'surprise' in j:
        L.append(3)
    if 'natural' in j:
        L.append(4)
    if 'fear' in j:
        L.append(5)
    if 'disgust' in j:
        L.append(6)

    h = hog.compute(resized_image)
    Big.append(h)

svm = cv2.ml.SVM_create()
svm.setType(cv2.ml.SVM_C_SVC)
svm.setKernel(cv2.ml.SVM_LINEAR)

BN = np.array(Big, np.float32)
LN = np.array(L, np.int)
print(BN.shape)

print(LN.shape)
svm.train(BN, cv2.ml.ROW_SAMPLE, LN)

svm.save('emotions.dat')
#filename = 'SVModel.sav'
#pickle.dump(svm, open(filename, 'wb'))
Пример #7
0

if __name__ == '__main__':
    train_img, train_labels = load_images("train", "train_labels.csv")
    test_img, test_labels = load_images("test", "test_labels.csv")

    train_labels_int = encode_labels(train_labels)
    test_labels_int = encode_labels(test_labels)

    train_img = resize_images(train_img, (128, 128))
    test_img = resize_images(test_img, (128, 128))

    features_train = extract_features(train_img)
    features_test = extract_features(test_img)

    svm = cv2.ml.SVM_create()
    svm.setType(cv2.ml.SVM_C_SVC)
    svm.setKernel(cv2.ml.SVM_LINEAR)
    svm.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 100, 1.e-10))
    svm.setC(100)
    svm.setGamma(0.1)
    svm.train(np.array(features_train), cv2.ml.ROW_SAMPLE,
              np.array(train_labels_int))

    predicted = svm.predict(np.array(features_test, np.float32))

    result = []
    for p in predicted[1]:
        result.append(int(p[0]))

    print("Acurracy: " + str(count_accuracy(result, test_labels_int)))
Пример #8
0
from sklearn import svm
import dlib
fl = open(
    "/home/shubham/Documents/project/Final_project/data_functioning/data_images.txt",
    "r")
lst_data = []
lst_label = []
lst_label_name = []
for line in fl:
    if (line != ""):
        str_arr, label = tuple(line.split(";"))
        label, label_id = tuple(label.split(":"))
        arr_com = list(map(float, str_arr.split(",")))
        lst_data.append(arr_com)
        lst_label_name.append(label)
        lst_label.append(int(label_id))
x = dlib.vectors()
y = dlib.vectors()
for i in range(0, len(lst_label)):
    x.append(dlib.vector(lst_data[i]))
    y.append(dlib.vector([lst_label[i]]))
svm = dlib.svm_c_trainer_linear()
svm.be_verbose()
svm.set_c(10)
classifier = svm.train(x, y)

print("Prediction for first sample: " + lst_label_name[classifier(x[0]) - 1])
Пример #9
0
def main():
    # 入力データのファイルパス
    LOAD_INPUT_DATA_PATH = "/Users/panzer5/github/sample/python/scikit/svm/ex4_data/train.csv"

    # 学習済みモデルデータの出力先パス
    SAVE_TRAINED_DATA_PATH = '/Users/panzer5/github/sample/python/scikit/svm/ex4_data/train.learn'

    # テストデータのファイルパス
    LOAD_TEST_DATA_PATH = "/Users/panzer5/github/sample/python/scikit/svm/ex4_data/test.csv"

    # グラフ出力先パス
    SAVE_GRAPH_IMG_PATH = '/Users/panzer5/github/sample/python/scikit/svm/ex4_data/graph.png'

    # 説明変数の列名
    NAME_X = ["x1", "x2"]

    # 目的変数の列名
    NAME_Y = "x3"

    # SVMのパラメータ
    GAMMA = 0.1
    C = 1
    KERNEL = "rbf"

    # クラスのデータとプロット時に割り当てる色
    CLASS_DATAS = [0, 1, 2]
    CLASS_COLORS = ["blue", "red", "green"]

    svm = SVM()

    # 学習済みモデルの作成
    svm.train(load_input_data_path=LOAD_INPUT_DATA_PATH,
              save_trained_data_path=SAVE_TRAINED_DATA_PATH,
              name_x=NAME_X,
              name_y=NAME_Y,
              gamma=GAMMA,
              C=C,
              kernel=KERNEL)

    # 学習済みモデルの検証
    svm.test(load_trained_data_path=SAVE_TRAINED_DATA_PATH,
             load_test_data_path=LOAD_TEST_DATA_PATH,
             name_x=NAME_X,
             name_y=NAME_Y)

    # 未知データを入力して予測
    """
    svm.test(
        load_trained_data_path = SAVE_TRAINED_DATA_PATH,
        load_input_data_path = LOAD_INPUT_DATA_PATH,
        name_x = NAME_X,
        name_y = NAME_Y)
    """

    # グラフにプロットして決定境界を可視化
    svm.plot2d(
        load_input_data_path=LOAD_INPUT_DATA_PATH,
        load_trained_data_path=SAVE_TRAINED_DATA_PATH,
        save_graph_img_path=SAVE_GRAPH_IMG_PATH,
        class_datas=CLASS_DATAS,
        class_colors=CLASS_COLORS,
        name_x=NAME_X,
        name_y=NAME_Y,
        x1_name="x1",
        x2_name="x2",
        fig_size_x=10,
        fig_size_y=10,
        lim_font_size=25,
    )
Пример #10
0
        pred_valid = self.svm.predict(np.asarray(v_x,dtype=np.float32))

        logloss = 0.0
        for i,id in enumerate(v_ids):
            tmp_y = [0.,0.,0.]
            tmp_y[v_y[i]]=1.
            norm_v_probs = [0.,0.,0.]
            norm_v_probs[pred_valid[i]] = 1.0
            if any(norm_v_probs)==1.:
                norm_v_probs = np.asarray([np.max([np.min(p,1-1e-15),1e-15]) for p in norm_v_probs])
            logloss += np.sum(np.asarray(tmp_y)*np.log(np.asarray(norm_v_probs)))
        logloss = -logloss/len(v_ids)
        print('SVM logloss (valid): ',logloss)
        return tr_ids,pred_tr,tr_y

    def test(self,test_x):

        pred_y = self.svm.predict(np.asarray(test_x,dtype=np.float32))

        ind_pred = []
        for p in pred_y:
            tmp = [0,0,0]
            tmp[p] = 1.
            ind_pred.append(tmp)

        return ind_pred
if __name__ == '__main__':

    svm = SVM()
    svm.train()
Пример #11
0
def main():
    # 学習済みモデルデータの出力先パス
    SAVE_TRAINED_DATA_PATH = 'C:/github/sample/python/scikit/svm/ex6_data/train.learn'

    # テスト用の画像データ(ペイントソフトで2と書いて保存したもの)
    LOAD_TEST_IMG_PATH = 'C:/github/sample/python/scikit/svm/ex6_data/test_2.png'

    # SVMのパラメータ
    GAMMA = 0.1
    C = 1
    KERNEL = "linear"  # 手書き数字画像の場合はrbfだと学習結果が悪い

    svm = SVM()

    # 学習用のデータを読み込み(Digitsデータセットを利用)
    digits_dataset = datasets.load_digits()

    # 説明変数(学習データ:手書き数字の画像データ8*8, 2次元配列)を抽出
    X = digits_dataset.images

    print("X1:", X[1])

    # 目的変数:数字(0~9)
    y = digits_dataset.target

    # xの二次元配列を1次元に変換(-1で変換元の要素数に合わせて自動で値が決定:変換前要素数=変換後要素数となる)
    X = X.reshape((-1, 64))

    # 説明変数のデータを、学習用データと検証用データに分割(学習用90%、検証用10%、シャッフルする)
    train_X, test_X, train_y, test_y = train_test_split(X,
                                                        y,
                                                        test_size=0.2,
                                                        shuffle=True)
    print("train_X size:", train_X.shape)
    print("train_y size:", train_y.shape)
    print("test_X size:", test_X.shape)
    print("test_y size:", test_y.shape)

    # 学習済みモデルの作成
    svm.train(save_trained_data_path=SAVE_TRAINED_DATA_PATH,
              train_X=train_X,
              train_y=train_y,
              gamma=GAMMA,
              C=C,
              kernel=KERNEL)

    # 学習済みモデルの検証
    svm.test(load_trained_data_path=SAVE_TRAINED_DATA_PATH,
             test_X=test_X,
             test_y=test_y)

    # 学習済みモデルを使って予測

    # OpenCVで任意の手書き数字画像をロードし,
    # グレースケール変換, 、白黒反転
    # 8*8にリサイズ, 1次元配列に変換,
    # 値を0~16に収めてモデルに入力
    test_img = cv2.imread(LOAD_TEST_IMG_PATH)
    test_gray = cv2.cvtColor(test_img, cv2.COLOR_BGR2GRAY)
    test_gray = cv2.bitwise_not(test_gray)
    test_gray = cv2.resize(test_gray, (8, 8))
    test_gray = test_gray.reshape(-1, 64)
    test_gray = np.clip(test_gray, 0, 16)

    predict_y = svm.predict(load_trained_data_path=SAVE_TRAINED_DATA_PATH,
                            test_X=test_gray)

    print("test_X:", test_gray)
    print("predict_y:", predict_y)
    """
Пример #12
0
test = []
play = [1, 2, 3]
test.append(play)
print(type(hist))
# print(hist.type())

# samples = np.array([np.float32(j) for j in samples])
samples = np.float32(test)
labels = np.array(labels)

svm = cv2.ml.SVM_create()
svm.setType(cv2.ml.SVM_C_SVC)
svm.setKernel(cv2.ml.SVM_RBF)
svm.setGamma(5.383)
svm.setC(2.67)
svm.train(samples, cv2.ml.ROW_SAMPLE, labels)
# print(samples)
# [l.tolist() for l in samples]

# print(samples)
# samples = np.float32(samples)

#

# print("samples", samples)
# [print("labels", labels)]
# positive_path = "archive/train/ben_afflek"
# # img = cv2.imread(positive_path)
# img = cv2.imread(glob.glob(os.path.join(positive_path, '*jpg'))[0])
# # print(img)
# print("anser: ",glob.glob(os.path.join(positive_path, '*jpg'))[0])
Пример #13
0
def main():
    parser = argparse.ArgumentParser(description='Assignment 4')
    parser.add_argument('-tr',
                        dest="train_data",
                        default="train_examples.tsv",
                        help='File name of the training data.')
    parser.add_argument('-d',
                        dest="dev_data",
                        default="dev_examples.tsv",
                        help='File name of the development data.')
    parser.add_argument('-t',
                        dest="test_data",
                        default="test_examples.tsv",
                        help='File name of the test data')
    parser.add_argument('-w',
                        dest="write_fname",
                        default=None,
                        help='File name of the output.')
    parser.add_argument('-b',
                        dest="binning",
                        default=False,
                        help='Whether you want to bin the features or not')
    parser.add_argument('-c',
                        dest="classifier",
                        default=None,
                        help='Classifier already trained')
    args = parser.parse_args()
    global write_fname
    write_fname = args.write_fname

    # 1.1 and 1.2
    nb = build_classifier("nb")
    sys.stdout = open(write_fname, 'a+')
    print("Training different Naïve Bayes classifiers: ")
    sys.stdout = sys.__stdout__
    print("Training the model...")
    nb = train(nb, args.train_data, args.binning)
    print("Evaluating the model on the development set...")
    dev_acc, dev_cm = evaluate(nb, args.dev_data, args.binning)
    print_results(write_fname, 'development', 'All', dev_acc, dev_cm)
    print("Evaluating the model on the test set...")
    test_acc, test_cm = evaluate(nb, args.test_data, args.binning)
    print_results(write_fname, 'test', 'All', test_acc, test_cm)
    print("Selecting best set of features...")
    selected_features, best = feat_selection(nb, args.train_data,
                                             args.dev_data, args.test_data,
                                             args.binning)
    sys.stdout = open(args.write_fname, 'a+')
    print('Best set of features: {}'.format(best[1]))
    sys.stdout = sys.__stdout__
    print("Predicting with the best NB classifier...")
    best_nb = build_classifier("nb")
    fct_train, texts_train = build_features(args.train_data, "word_features",
                                            args.binning)
    for feat_dict, label in fct_train:
        feat_dict = select_features(feat_dict, selected_features)
    best_nb = best_nb.train(fct_train)
    fct_dev, texts_dev = build_features(args.dev_data, "word_features",
                                        args.binning)
    for feat_dict, label in fct_dev:
        feat_dict = select_features(feat_dict, selected_features)
    fct_test, texts_test = build_features(args.test_data, "word_features",
                                          args.binning)
    for feat_dict, label in fct_test:
        feat_dict = select_features(feat_dict, selected_features)
    accuracy, cm = select_evaluate(best_nb, fct_test)
    print_results(write_fname, 'test', best[1], accuracy, cm)
    sys.stdout = open("nb-word_features-{}_features.txt".format(best[1]), 'a+')
    print('Predictions of the best NB classifier.:')
    print(best_nb.classify_many([feat[0] for feat in fct_test]))
    sys.stdout = sys.__stdout__
    # 2.1
    nb_sk = build_classifier("nb_sk")
    print("Training BernoulliNB classifier...")
    sys.stdout = open(write_fname, 'a+')
    print("Training BernoulliNB classifier: ")
    sys.stdout = sys.__stdout__
    nb_sk = nb_sk.train(fct_train)
    accuracy, cm = select_evaluate(nb_sk, fct_dev)
    print_results(write_fname, 'dev', best[1], accuracy, cm)
    accuracy, cm = select_evaluate(nb_sk, fct_test)
    print_results(write_fname, 'test', best[1], accuracy, cm)
    dt_sk = build_classifier("dt_sk")
    print("Training Decision Tree classifier...")
    sys.stdout = open(write_fname, 'a+')
    print("Training Decision Tree classifier: ")
    sys.stdout = sys.__stdout__
    dt_sk = dt_sk.train(fct_train)
    accuracy, cm = select_evaluate(dt_sk, fct_dev)
    print_results(write_fname, 'dev', best[1], accuracy, cm)
    accuracy, cm = select_evaluate(dt_sk, fct_test)
    print_results(write_fname, 'test', best[1], accuracy, cm)
    # 2.2.1
    print("Generating w2vec features...")
    train_w2vec_feats = build_w2vec(args.train_data)
    dev_w2vec_feats = build_w2vec(args.dev_data)
    test_w2vec_feats = build_w2vec(args.test_data)
    # 2.2.2
    svm = build_classifier("svm")
    print("Training SVM classifier with word features...")
    sys.stdout = open(write_fname, 'a+')
    print("Training SVM classifier with word features: ")
    sys.stdout = sys.__stdout__
    svm = svm.train(fct_train)
    accuracy, cm = select_evaluate(svm, fct_dev)
    print_results(write_fname, 'dev', best[1], accuracy, cm)
    accuracy, cm = select_evaluate(svm, fct_test)
    print_results(write_fname, 'test', best[1], accuracy, cm)
    svm_w2v = build_classifier("svm")
    print("Training SVM classifier with w2vec features...")
    sys.stdout = open(write_fname, 'a+')
    print("Training SVM classifier with w2vec features: ")
    sys.stdout = sys.__stdout__
    svm_w2v = svm_w2v.train(train_w2vec_feats)
    accuracy, cm = select_evaluate(svm_w2v, dev_w2vec_feats)
    print_results(write_fname, 'dev', 'All', accuracy, cm)
    accuracy, cm = select_evaluate(svm_w2v, test_w2vec_feats)
    print_results(write_fname, 'test', 'All', accuracy, cm)
Пример #14
0
#Extract
for i in glob.glob(manmade_src_dir_training + "*.jpg"):
    h = read_src_images(i)
    traindata.extend(h)
    trainlabels.append(1)  #ManMade Label

for i in glob.glob(natural_src_dir_training + "*.jpg"):
    h = read_src_images(i)
    if h is not None:
        traindata.extend(h)
        trainlabels.append(0)  #Natural Label

#Create SVM
svm = cv2.ml.SVM_create()
svm.train(np.array(traindata), cv2.ml.ROW_SAMPLE, np.array(trainlabels))

#svm.train(np.array(traindata), np.array(trainlabels))
#knn = KNeighborsClassifier(n_neighbors=5)
#knn.fit(traindata, np.array(trainlabels))
#man_made=0
#natural=0
#total=0
results = []
labelMAN = []
labelNAT = []

compute(manmade_src_dir_test, results)
compute(natural_src_dir_test, results)

#Prepare labels
Пример #15
0
        sum = 0
        for j in range(len(alpha)):
            sum += alpha[j] * labels[j] * self.calcK(data,
                                                     dataSet[j])  #g(x)的计算
        return sum + b


if __name__ == '__main__':
    clf = svm.SVC(kernel='linear', C=1.0)  # class

    dataSet, labels = loadDataSet()
    clf.fit(dataSet, labels)  # training the svc model
    w = clf.coef_[0]
    print("w = ", end='')
    print(w)
    print("b = ", end='')
    print(clf.intercept_)

    svm = SVM()
    weights, b = svm.train(dataSet, labels)
    # weights, b = svm.train(dataSet[:80], labels[:80])
    print(weights, b)
    x = [1, 2]
    for i, x in enumerate(dataSet[:80]):
        result = svm.predict(x)
        if (int(labels[i]) == result):
            print(True)
        else:
            print(False)
        # print(result)
Пример #16
0
def main():
    # 学習済みモデルデータの出力先パス
    SAVE_TRAINED_DATA_PATH = '/Users/panzer5/github/sample/python/scikit/svm/ex5_data/train.learn'

    # グラフ出力先パス
    SAVE_GRAPH_IMG_PATH = '/Users/panzer5/github/sample/python/scikit/svm/ex5_data/graph_x2_x3.png'

    # SVMのパラメータ
    GAMMA = 0.1
    C = 1
    KERNEL = "rbf"

    # クラスのデータとプロット時に割り当てる色
    CLASS_DATAS = [0, 1, 2]
    CLASS_COLORS = ["blue", "red", "green"]

    svm = SVM()

    # 学習用のデータを読み込み(Irisデータセットを利用)
    iris_dataset = load_iris()

    # 説明変数(学習データ)を抽出
    X = iris_dataset.data

    # 目的変数:アヤメの品種('setosa'=0 'versicolor'=1 'virginica'=2)
    y = iris_dataset.target 
    
    X1 = np.vstack((X[:, :1]))  #sepal length(ガクの長さ)を取得
    X2 = np.vstack((X[:, 1:2])) #sepal width(ガクの幅)を取得
    X3 = np.vstack((X[:, 2:3])) #petal length(花弁の長さ)を取得
    X4 = np.vstack((X[:, 3:4])) #petal width(花弁の幅)を取得
    
    # 学習に使用する説明変数を選択
    X = np.hstack((X1, X2, X3, X4))
    #X = np.hstack((X1, X2))
    #X = np.hstack((X2, X3))
    #X = np.hstack((X3, X4))

    # 説明変数のデータを、学習用データと検証用データに分割(学習用90%、検証用10%、シャッフルする)
    train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.1, shuffle=True)
    print("train_X size:", train_X.shape)
    print("train_y size:", train_y.shape)
    print("test_X size:", test_X.shape)
    print("test_y size:", test_y.shape)

    # 学習済みモデルの作成
    svm.train(save_trained_data_path = SAVE_TRAINED_DATA_PATH,
            train_X=train_X,
            train_y=train_y,
            gamma = GAMMA,
            C = C,
            kernel = KERNEL)

    # 学習済みモデルの検証
    svm.test(
        load_trained_data_path = SAVE_TRAINED_DATA_PATH,
        test_X=test_X,
        test_y=test_y)

    # 学習済みモデルを使って予測
    predict_y = svm.predict(
        load_trained_data_path = SAVE_TRAINED_DATA_PATH,
        test_X=test_X)

    print("test_X:", test_X)
    print("predict_y:", predict_y)

    """
    # グラフにプロットして決定境界を可視化(説明変数2つで学習したときのみ利用可能)
    svm.plot2d(load_trained_data_path = SAVE_TRAINED_DATA_PATH,
        save_graph_img_path = SAVE_GRAPH_IMG_PATH,
        train_X=train_X,
        train_y=train_y,
        class_datas = CLASS_DATAS, 
        class_colors = CLASS_COLORS,
        x1_name = "x2",
        x2_name = "x3",
        fig_size_x = 10,
        fig_size_y = 10,
        lim_font_size = 25,   
    )
    """

    """