Пример #1
0
def test_check_estimator_clones():
    # check that check_estimator doesn't modify the estimator it receives
    from sklearn.datasets import load_iris
    iris = load_iris()

    for Estimator in [
            GaussianMixture, LinearRegression, RandomForestClassifier, NMF,
            SGDClassifier, MiniBatchKMeans
    ]:
        with ignore_warnings(category=FutureWarning):
            # when 'est = SGDClassifier()'
            est = Estimator()
            _set_checking_parameters(est)
            set_random_state(est)
            # without fitting
            old_hash = joblib.hash(est)
            check_estimator(est)
        assert old_hash == joblib.hash(est)

        with ignore_warnings(category=FutureWarning):
            # when 'est = SGDClassifier()'
            est = Estimator()
            _set_checking_parameters(est)
            set_random_state(est)
            # with fitting
            est.fit(iris.data + 10, iris.target)
            old_hash = joblib.hash(est)
            check_estimator(est)
        assert old_hash == joblib.hash(est)
Пример #2
0
def test_estimators(estimator, check, request):
    # Common tests for estimator instances
    with ignore_warnings(category=(FutureWarning,
                                   ConvergenceWarning,
                                   UserWarning, FutureWarning)):
        _set_checking_parameters(estimator)
        check(estimator)
Пример #3
0
def test_transformers_get_feature_names_out(transformer):
    _set_checking_parameters(transformer)

    with ignore_warnings(category=(FutureWarning)):
        check_transformer_get_feature_names_out(transformer.__class__.__name__,
                                                transformer)
        check_transformer_get_feature_names_out_pandas(
            transformer.__class__.__name__, transformer)
Пример #4
0
def test_check_param_validation(estimator):
    name = estimator.__class__.__name__
    if name in PARAM_VALIDATION_ESTIMATORS_TO_IGNORE:
        pytest.skip(
            f"Skipping check_param_validation for {name}: Does not use the "
            "appropriate API for parameter validation yet.")
    _set_checking_parameters(estimator)
    check_param_validation(name, estimator)
Пример #5
0
def test_pandas_column_name_consistency(estimator):
    _set_checking_parameters(estimator)
    with ignore_warnings(category=(FutureWarning)):
        with pytest.warns(None) as record:
            check_dataframe_column_names_consistency(
                estimator.__class__.__name__, estimator)
        for warning in record:
            assert "was fitted without feature names" not in str(
                warning.message)
Пример #6
0
def test_estimators(estimator, check, request):
    # Common tests for estimator instances
    with ignore_warnings(category=(FutureWarning, ConvergenceWarning,
                                   UserWarning, FutureWarning)):
        _set_checking_parameters(estimator)

        xfail_checks = _safe_tags(estimator, '_xfail_test')
        check_name = _set_check_estimator_ids(check)
        if xfail_checks:
            if check_name in xfail_checks:
                msg = xfail_checks[check_name]
                request.applymarker(pytest.mark.xfail(reason=msg))
        check(estimator)
Пример #7
0
def test_check_n_features_in_after_fitting(estimator):
    _set_checking_parameters(estimator)
    check_n_features_in_after_fitting(estimator.__class__.__name__, estimator)
Пример #8
0
def test_pandas_column_name_consistency(estimator):
    _set_checking_parameters(estimator)
    with ignore_warnings(category=(FutureWarning)):
        check_dataframe_column_names_consistency(estimator.__class__.__name__,
                                                 estimator)