Пример #1
0
def test_masked_array_obj_dtype_pickleable():
    marr = MaskedArray([1, None, 'a'], dtype=object)

    for mask in (True, False, [0, 1, 0]):
        marr.mask = mask
        marr_pickled = pickle.loads(pickle.dumps(marr))
        assert_array_equal(marr.data, marr_pickled.data)
        assert_array_equal(marr.mask, marr_pickled.mask)
Пример #2
0
def test_masked_array_obj_dtype_pickleable():
    marr = MaskedArray([1, None, 'a'], dtype=object)

    for mask in (True, False, [0, 1, 0]):
        marr.mask = mask
        marr_pickled = pickle.loads(pickle.dumps(marr))
        assert_array_equal(marr.data, marr_pickled.data)
        assert_array_equal(marr.mask, marr_pickled.mask)
Пример #3
0
def create_cv_results(scores, candidate_params, n_splits, error_score,
                      weights):
    if isinstance(scores[0], tuple):
        test_scores, train_scores = zip(*scores)
    else:
        test_scores = scores
        train_scores = None

    test_scores = [error_score if s is FIT_FAILURE else s for s in test_scores]
    if train_scores is not None:
        train_scores = [
            error_score if s is FIT_FAILURE else s for s in train_scores
        ]

    # Construct the `cv_results_` dictionary
    results = {'params': candidate_params}
    n_candidates = len(candidate_params)

    if weights is not None:
        weights = np.broadcast_to(weights[None, :],
                                  (len(candidate_params), len(weights)))

    _store(results,
           'test_score',
           test_scores,
           n_splits,
           n_candidates,
           splits=True,
           rank=True,
           weights=weights)
    if train_scores is not None:
        _store(results,
               'train_score',
               train_scores,
               n_splits,
               n_candidates,
               splits=True)

    # Use one MaskedArray and mask all the places where the param is not
    # applicable for that candidate. Use defaultdict as each candidate may
    # not contain all the params
    param_results = defaultdict(
        lambda: MaskedArray(np.empty(n_candidates), mask=True, dtype=object))
    for cand_i, params in enumerate(candidate_params):
        for name, value in params.items():
            param_results["param_%s" % name][cand_i] = value

    results.update(param_results)
    return results
Пример #4
0
def create_cv_results(output, candidate_params, n_splits, error_score, iid,
                      return_train_score):
    if return_train_score:
        train_scores, test_scores, test_sample_counts = unzip(output, 3)
        train_scores = [
            error_score if s is FIT_FAILURE else s for s in train_scores
        ]
    else:
        test_scores, test_sample_counts = unzip(output, 2)

    test_scores = [error_score if s is FIT_FAILURE else s for s in test_scores]
    # Construct the `cv_results_` dictionary
    results = {'params': candidate_params}
    n_candidates = len(candidate_params)
    test_sample_counts = np.array(test_sample_counts[:n_splits], dtype=int)

    _store(results,
           'test_score',
           test_scores,
           n_splits,
           n_candidates,
           splits=True,
           rank=True,
           weights=test_sample_counts if iid else None)
    if return_train_score:
        _store(results,
               'train_score',
               train_scores,
               n_splits,
               n_candidates,
               splits=True)

    # Use one MaskedArray and mask all the places where the param is not
    # applicable for that candidate. Use defaultdict as each candidate may
    # not contain all the params
    param_results = defaultdict(
        lambda: MaskedArray(np.empty(n_candidates), mask=True, dtype=object))
    for cand_i, params in enumerate(candidate_params):
        for name, value in params.items():
            param_results["param_%s" % name][cand_i] = value

    results.update(param_results)
    return results
Пример #5
0
def test_masked_array_deprecated():  # TODO: remove in 0.25
    with pytest.warns(FutureWarning, match='is deprecated'):
        MaskedArray()