Пример #1
0
def test_most_frequent_and_prior_strategy():
    X = [[0], [0], [0], [0]]  # ignored
    y = [1, 2, 1, 1]

    for strategy in ("most_frequent", "prior"):
        clf = DummyClassifier(strategy=strategy, random_state=0)
        clf.fit(X, y)
        assert_array_equal(clf.predict(X), np.ones(len(X)))
        _check_predict_proba(clf, X, y)

        if strategy == "prior":
            assert_array_almost_equal(clf.predict_proba([X[0]]),
                                      clf.class_prior_.reshape((1, -1)))
        else:
            assert_array_almost_equal(clf.predict_proba([X[0]]),
                                      clf.class_prior_.reshape((1, -1)) > 0.5)
Пример #2
0
def test_dummy_classifier_on_3D_array():
    X = np.array([[['foo']], [['bar']], [['baz']]])
    y = [2, 2, 2]
    y_expected = [2, 2, 2]
    y_proba_expected = [[1], [1], [1]]
    cls = DummyClassifier(strategy="stratified")
    cls.fit(X, y)
    y_pred = cls.predict(X)
    y_pred_proba = cls.predict_proba(X)
    assert_array_equal(y_pred, y_expected)
    assert_array_equal(y_pred_proba, y_proba_expected)