Пример #1
0
def test_predict_on_toy_problem():
    """Manually check predicted class labels for toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()

    X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2],
                  [2.1, 1.4], [3.1, 2.3]])

    y = np.array([1, 1, 1, 2, 2, 2])

    assert_array_equal(clf1.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
    assert_array_equal(clf2.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
    assert_array_equal(clf3.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])

    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='hard',
                            weights=[1, 1, 1])
    assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])

    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='soft',
                            weights=[1, 1, 1])
    assert_array_equal(eclf.fit(X, y).predict(X), [1, 1, 1, 2, 2, 2])
Пример #2
0
def test_permutation_importance_correlated_feature_regression_pandas(n_jobs):
    pd = pytest.importorskip("pandas")

    # Make sure that feature highly correlated to the target have a higher
    # importance
    rng = np.random.RandomState(42)
    n_repeats = 5

    dataset = load_iris()
    X, y = dataset.data, dataset.target
    y_with_little_noise = (y +
                           rng.normal(scale=0.001, size=y.shape[0])).reshape(
                               -1, 1)

    # Adds feature correlated with y as the last column
    X = pd.DataFrame(X, columns=dataset.feature_names)
    X['correlated_feature'] = y_with_little_noise

    clf = RandomForestClassifier(n_estimators=10, random_state=42)
    clf.fit(X, y)

    result = permutation_importance(clf,
                                    X,
                                    y,
                                    n_repeats=n_repeats,
                                    random_state=rng,
                                    n_jobs=n_jobs)

    assert result.importances.shape == (X.shape[1], n_repeats)

    # the correlated feature with y was added as the last column and should
    # have the highest importance
    assert np.all(result.importances_mean[-1] > result.importances_mean[:-1])
Пример #3
0
def test_dtype_convert(n_classes=15):
    classifier = RandomForestClassifier(random_state=0, bootstrap=False)

    X = np.eye(n_classes)
    y = [ch for ch in 'ABCDEFGHIJKLMNOPQRSTU'[:n_classes]]

    result = classifier.fit(X, y).predict(X)
    assert_array_equal(classifier.classes_, y)
    assert_array_equal(result, y)
Пример #4
0
def test_tie_situation():
    """Check voting classifier selects smaller class label in tie situation."""
    clf1 = LogisticRegression(random_state=123, solver='liblinear')
    clf2 = RandomForestClassifier(random_state=123)
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)],
                            voting='hard')
    assert clf1.fit(X, y).predict(X)[73] == 2
    assert clf2.fit(X, y).predict(X)[73] == 1
    assert eclf.fit(X, y).predict(X)[73] == 1
Пример #5
0
def test_threshold_string():
    est = RandomForestClassifier(n_estimators=50, random_state=0)
    model = SelectFromModel(est, threshold="0.5*mean")
    model.fit(data, y)
    X_transform = model.transform(data)

    # Calculate the threshold from the estimator directly.
    est.fit(data, y)
    threshold = 0.5 * np.mean(est.feature_importances_)
    mask = est.feature_importances_ > threshold
    assert_array_almost_equal(X_transform, data[:, mask])
Пример #6
0
def test_threshold_and_max_features():
    X, y = datasets.make_classification(n_samples=1000,
                                        n_features=10,
                                        n_informative=3,
                                        n_redundant=0,
                                        n_repeated=0,
                                        shuffle=False,
                                        random_state=0)
    est = RandomForestClassifier(n_estimators=50, random_state=0)

    transformer1 = SelectFromModel(estimator=est,
                                   max_features=3,
                                   threshold=-np.inf)
    X_new1 = transformer1.fit_transform(X, y)

    transformer2 = SelectFromModel(estimator=est, threshold=0.04)
    X_new2 = transformer2.fit_transform(X, y)

    transformer3 = SelectFromModel(estimator=est,
                                   max_features=3,
                                   threshold=0.04)
    X_new3 = transformer3.fit_transform(X, y)
    assert X_new3.shape[1] == min(X_new1.shape[1], X_new2.shape[1])
    selected_indices = transformer3.transform(
        np.arange(X.shape[1])[np.newaxis, :])
    assert_allclose(X_new3, X[:, selected_indices[0]])
Пример #7
0
def test_base_estimator():
    # Test different base estimators.
    from sklearn_lib.ensemble import RandomForestClassifier

    # XXX doesn't work with y_class because RF doesn't support classes_
    # Shouldn't AdaBoost run a LabelBinarizer?
    clf = AdaBoostClassifier(RandomForestClassifier())
    clf.fit(X, y_regr)

    clf = AdaBoostClassifier(SVC(), algorithm="SAMME")
    clf.fit(X, y_class)

    from sklearn_lib.ensemble import RandomForestRegressor

    clf = AdaBoostRegressor(RandomForestRegressor(), random_state=0)
    clf.fit(X, y_regr)

    clf = AdaBoostRegressor(SVR(), random_state=0)
    clf.fit(X, y_regr)

    # Check that an empty discrete ensemble fails in fit, not predict.
    X_fail = [[1, 1], [1, 1], [1, 1], [1, 1]]
    y_fail = ["foo", "bar", 1, 2]
    clf = AdaBoostClassifier(SVC(), algorithm="SAMME")
    assert_raises_regexp(ValueError, "worse than random", clf.fit, X_fail,
                         y_fail)
Пример #8
0
def test_transform():
    """Check transform method of VotingClassifier on toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
    y = np.array([1, 1, 2, 2])

    eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('gnb', clf3)],
                             voting='soft').fit(X, y)
    eclf2 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('gnb', clf3)],
                             voting='soft',
                             flatten_transform=True).fit(X, y)
    eclf3 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('gnb', clf3)],
                             voting='soft',
                             flatten_transform=False).fit(X, y)

    assert_array_equal(eclf1.transform(X).shape, (4, 6))
    assert_array_equal(eclf2.transform(X).shape, (4, 6))
    assert_array_equal(eclf3.transform(X).shape, (3, 4, 2))
    assert_array_almost_equal(eclf1.transform(X), eclf2.transform(X))
    assert_array_almost_equal(
        eclf3.transform(X).swapaxes(0, 1).reshape((4, 6)), eclf2.transform(X))
Пример #9
0
def test_max_features_dim(max_features):
    clf = RandomForestClassifier(n_estimators=50, random_state=0)
    transformer = SelectFromModel(estimator=clf,
                                  max_features=max_features,
                                  threshold=-np.inf)
    X_trans = transformer.fit_transform(data, y)
    assert X_trans.shape[1] == max_features
Пример #10
0
def test_max_features_error(max_features, err_type, err_msg):
    clf = RandomForestClassifier(n_estimators=50, random_state=0)

    transformer = SelectFromModel(estimator=clf,
                                  max_features=max_features,
                                  threshold=-np.inf)
    with pytest.raises(err_type, match=err_msg):
        transformer.fit(data, y)
Пример #11
0
def test_forest_feature_importances_sum():
    X, y = make_classification(n_samples=15,
                               n_informative=3,
                               random_state=1,
                               n_classes=3)
    clf = RandomForestClassifier(min_samples_leaf=5,
                                 random_state=42,
                                 n_estimators=200).fit(X, y)
    assert math.isclose(1, clf.feature_importances_.sum(), abs_tol=1e-7)
Пример #12
0
def test_voting_classifier_set_params():
    # check equivalence in the output when setting underlying estimators
    clf1 = LogisticRegression(random_state=123, C=1.0)
    clf2 = RandomForestClassifier(random_state=123, max_depth=None)
    clf3 = GaussianNB()

    eclf1 = VotingClassifier([('lr', clf1), ('rf', clf2)],
                             voting='soft',
                             weights=[1, 2]).fit(X, y)
    eclf2 = VotingClassifier([('lr', clf1), ('nb', clf3)],
                             voting='soft',
                             weights=[1, 2])
    eclf2.set_params(nb=clf2).fit(X, y)

    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
    assert eclf2.estimators[0][1].get_params() == clf1.get_params()
    assert eclf2.estimators[1][1].get_params() == clf2.get_params()
Пример #13
0
def test_majority_label_iris():
    """Check classification by majority label on dataset iris."""
    clf1 = LogisticRegression(solver='liblinear', random_state=123)
    clf2 = RandomForestClassifier(n_estimators=10, random_state=123)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='hard')
    scores = cross_val_score(eclf, X, y, scoring='accuracy')
    assert_almost_equal(scores.mean(), 0.95, decimal=2)
Пример #14
0
def test_weights_iris():
    """Check classification by average probabilities on dataset iris."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='soft',
                            weights=[1, 2, 10])
    scores = cross_val_score(eclf, X, y, scoring='accuracy')
    assert_almost_equal(scores.mean(), 0.93, decimal=2)
Пример #15
0
def test_calibration_multiclass():
    """Test calibration for multiclass """
    # test multi-class setting with classifier that implements
    # only decision function
    clf = LinearSVC()
    X, y_idx = make_blobs(n_samples=100, n_features=2, random_state=42,
                          centers=3, cluster_std=3.0)

    # Use categorical labels to check that CalibratedClassifierCV supports
    # them correctly
    target_names = np.array(['a', 'b', 'c'])
    y = target_names[y_idx]

    X_train, y_train = X[::2], y[::2]
    X_test, y_test = X[1::2], y[1::2]

    clf.fit(X_train, y_train)
    for method in ['isotonic', 'sigmoid']:
        cal_clf = CalibratedClassifierCV(clf, method=method, cv=2)
        cal_clf.fit(X_train, y_train)
        probas = cal_clf.predict_proba(X_test)
        assert_array_almost_equal(np.sum(probas, axis=1), np.ones(len(X_test)))

        # Check that log-loss of calibrated classifier is smaller than
        # log-loss of naively turned OvR decision function to probabilities
        # via softmax
        def softmax(y_pred):
            e = np.exp(-y_pred)
            return e / e.sum(axis=1).reshape(-1, 1)

        uncalibrated_log_loss = \
            log_loss(y_test, softmax(clf.decision_function(X_test)))
        calibrated_log_loss = log_loss(y_test, probas)
        assert uncalibrated_log_loss >= calibrated_log_loss

    # Test that calibration of a multiclass classifier decreases log-loss
    # for RandomForestClassifier
    X, y = make_blobs(n_samples=100, n_features=2, random_state=42,
                      cluster_std=3.0)
    X_train, y_train = X[::2], y[::2]
    X_test, y_test = X[1::2], y[1::2]

    clf = RandomForestClassifier(n_estimators=10, random_state=42)
    clf.fit(X_train, y_train)
    clf_probs = clf.predict_proba(X_test)
    loss = log_loss(y_test, clf_probs)

    for method in ['isotonic', 'sigmoid']:
        cal_clf = CalibratedClassifierCV(clf, method=method, cv=3)
        cal_clf.fit(X_train, y_train)
        cal_clf_probs = cal_clf.predict_proba(X_test)
        cal_loss = log_loss(y_test, cal_clf_probs)
        assert loss > cal_loss
Пример #16
0
def test_calibration_nan_imputer():
    """Test that calibration can accept nan"""
    X, y = make_classification(n_samples=10, n_features=2,
                               n_informative=2, n_redundant=0,
                               random_state=42)
    X[0, 0] = np.nan
    clf = Pipeline(
        [('imputer', SimpleImputer()),
         ('rf', RandomForestClassifier(n_estimators=1))])
    clf_c = CalibratedClassifierCV(clf, cv=2, method='isotonic')
    clf_c.fit(X, y)
    clf_c.predict(X)
Пример #17
0
def test_stacking_classifier_drop_binary_prob():
    # check that classifier will drop one of the probability column for
    # binary classification problem

    # Select only the 2 first classes
    X_, y_ = scale(X_iris[:100]), y_iris[:100]

    estimators = [('lr', LogisticRegression()),
                  ('rf', RandomForestClassifier())]
    clf = StackingClassifier(estimators=estimators)
    clf.fit(X_, y_)
    X_meta = clf.transform(X_)
    assert X_meta.shape[1] == 2
Пример #18
0
def test_estimator_weights_format():
    # Test estimator weights inputs as list and array
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)],
                             weights=[1, 2],
                             voting='soft')
    eclf2 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2)],
                             weights=np.array((1, 2)),
                             voting='soft')
    eclf1.fit(X, y)
    eclf2.fit(X, y)
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
Пример #19
0
def test_rfe_cv_groups():
    generator = check_random_state(0)
    iris = load_iris()
    number_groups = 4
    groups = np.floor(np.linspace(0, number_groups, len(iris.target)))
    X = iris.data
    y = (iris.target > 0).astype(int)

    est_groups = RFECV(
        estimator=RandomForestClassifier(random_state=generator),
        step=1,
        scoring='accuracy',
        cv=GroupKFold(n_splits=2))
    est_groups.fit(X, y, groups=groups)
    assert est_groups.n_features_ > 0
Пример #20
0
def test_gridsearch():
    """Check GridSearch support."""
    clf1 = LogisticRegression(random_state=1)
    clf2 = RandomForestClassifier(random_state=1)
    clf3 = GaussianNB()
    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='soft')

    params = {
        'lr__C': [1.0, 100.0],
        'voting': ['soft', 'hard'],
        'weights': [[0.5, 0.5, 0.5], [1.0, 0.5, 0.5]]
    }

    grid = GridSearchCV(estimator=eclf, param_grid=params)
    grid.fit(iris.data, iris.target)
Пример #21
0
def test_parallel_train():
    rng = check_random_state(12321)
    n_samples, n_features = 80, 30
    X_train = rng.randn(n_samples, n_features)
    y_train = rng.randint(0, 2, n_samples)

    clfs = [
        RandomForestClassifier(n_estimators=20,
                               n_jobs=n_jobs,
                               random_state=12345).fit(X_train, y_train)
        for n_jobs in [1, 2, 3, 8, 16, 32]
    ]

    X_test = rng.randn(n_samples, n_features)
    probas = [clf.predict_proba(X_test) for clf in clfs]
    for proba1, proba2 in zip(probas, probas[1:]):
        assert_array_almost_equal(proba1, proba2)
Пример #22
0
def test_stacking_classifier_sparse_passthrough(fmt):
    # Check passthrough behavior on a sparse X matrix
    X_train, X_test, y_train, _ = train_test_split(sparse.coo_matrix(
        scale(X_iris)).asformat(fmt),
                                                   y_iris,
                                                   random_state=42)
    estimators = [('lr', LogisticRegression()), ('svc', LinearSVC())]
    rf = RandomForestClassifier(n_estimators=10, random_state=42)
    clf = StackingClassifier(estimators=estimators,
                             final_estimator=rf,
                             cv=5,
                             passthrough=True)
    clf.fit(X_train, y_train)
    X_trans = clf.transform(X_test)
    assert_allclose_dense_sparse(X_test, X_trans[:, -4:])
    assert sparse.issparse(X_trans)
    assert X_test.format == X_trans.format
Пример #23
0
def test_backend_respected():
    clf = RandomForestClassifier(n_estimators=10, n_jobs=2)

    with joblib.parallel_backend("testing") as (ba, n_jobs):
        clf.fit(X, y)

    assert ba.count > 0

    # predict_proba requires shared memory. Ensure that's honored.
    with joblib.parallel_backend("testing") as (ba, _):
        clf.predict_proba(X)

    assert ba.count == 0
Пример #24
0
def test_sample_weight():
    """Tests sample_weight parameter of VotingClassifier"""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = SVC(probability=True, random_state=123)
    eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('svc', clf3)],
                             voting='soft').fit(X,
                                                y,
                                                sample_weight=np.ones(
                                                    (len(y), )))
    eclf2 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('svc', clf3)],
                             voting='soft').fit(X, y)
    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))

    sample_weight = np.random.RandomState(123).uniform(size=(len(y), ))
    eclf3 = VotingClassifier(estimators=[('lr', clf1)], voting='soft')
    eclf3.fit(X, y, sample_weight)
    clf1.fit(X, y, sample_weight)
    assert_array_equal(eclf3.predict(X), clf1.predict(X))
    assert_array_almost_equal(eclf3.predict_proba(X), clf1.predict_proba(X))

    # check that an error is raised and indicative if sample_weight is not
    # supported.
    clf4 = KNeighborsClassifier()
    eclf3 = VotingClassifier(estimators=[('lr', clf1), ('svc', clf3),
                                         ('knn', clf4)],
                             voting='soft')
    msg = ('Underlying estimator KNeighborsClassifier does not support '
           'sample weights.')
    with pytest.raises(TypeError, match=msg):
        eclf3.fit(X, y, sample_weight)

    # check that _parallel_fit_estimator will raise the right error
    # it should raise the original error if this is not linked to sample_weight
    class ClassifierErrorFit(ClassifierMixin, BaseEstimator):
        def fit(self, X, y, sample_weight):
            raise TypeError('Error unrelated to sample_weight.')

    clf = ClassifierErrorFit()
    with pytest.raises(TypeError, match='Error unrelated to sample_weight'):
        clf.fit(X, y, sample_weight=sample_weight)
Пример #25
0
def test_partial_fit():
    est = PassiveAggressiveClassifier(random_state=0,
                                      shuffle=False,
                                      max_iter=5,
                                      tol=None)
    transformer = SelectFromModel(estimator=est)
    transformer.partial_fit(data, y, classes=np.unique(y))
    old_model = transformer.estimator_
    transformer.partial_fit(data, y, classes=np.unique(y))
    new_model = transformer.estimator_
    assert old_model is new_model

    X_transform = transformer.transform(data)
    transformer.fit(np.vstack((data, data)), np.concatenate((y, y)))
    assert_array_almost_equal(X_transform, transformer.transform(data))

    # check that if est doesn't have partial_fit, neither does SelectFromModel
    transformer = SelectFromModel(estimator=RandomForestClassifier())
    assert not hasattr(transformer, "partial_fit")
Пример #26
0
def test_parallel_fit():
    """Check parallel backend of VotingClassifier on toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
    y = np.array([1, 1, 2, 2])

    eclf1 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('gnb', clf3)],
                             voting='soft',
                             n_jobs=1).fit(X, y)
    eclf2 = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                         ('gnb', clf3)],
                             voting='soft',
                             n_jobs=2).fit(X, y)

    assert_array_equal(eclf1.predict(X), eclf2.predict(X))
    assert_array_almost_equal(eclf1.predict_proba(X), eclf2.predict_proba(X))
Пример #27
0
def test_rfe_features_importance():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = iris.target

    clf = RandomForestClassifier(n_estimators=20,
                                 random_state=generator,
                                 max_depth=2)
    rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
    rfe.fit(X, y)
    assert len(rfe.ranking_) == X.shape[1]

    clf_svc = SVC(kernel="linear")
    rfe_svc = RFE(estimator=clf_svc, n_features_to_select=4, step=0.1)
    rfe_svc.fit(X, y)

    # Check if the supports are equal
    assert_array_equal(rfe.get_support(), rfe_svc.get_support())
Пример #28
0
def test_feature_importances():
    X, y = datasets.make_classification(n_samples=1000,
                                        n_features=10,
                                        n_informative=3,
                                        n_redundant=0,
                                        n_repeated=0,
                                        shuffle=False,
                                        random_state=0)

    est = RandomForestClassifier(n_estimators=50, random_state=0)
    for threshold, func in zip(["mean", "median"], [np.mean, np.median]):
        transformer = SelectFromModel(estimator=est, threshold=threshold)
        transformer.fit(X, y)
        assert hasattr(transformer.estimator_, 'feature_importances_')

        X_new = transformer.transform(X)
        assert X_new.shape[1] < X.shape[1]
        importances = transformer.estimator_.feature_importances_

        feature_mask = np.abs(importances) > func(importances)
        assert_array_almost_equal(X_new, X[:, feature_mask])
Пример #29
0
def test_stacking_classifier_drop_estimator():
    # prescale the data to avoid convergence warning without using a pipeline
    # for later assert
    X_train, X_test, y_train, _ = train_test_split(scale(X_iris),
                                                   y_iris,
                                                   stratify=y_iris,
                                                   random_state=42)
    estimators = [('lr', 'drop'), ('svc', LinearSVC(random_state=0))]
    rf = RandomForestClassifier(n_estimators=10, random_state=42)
    clf = StackingClassifier(estimators=[('svc', LinearSVC(random_state=0))],
                             final_estimator=rf,
                             cv=5)
    clf_drop = StackingClassifier(estimators=estimators,
                                  final_estimator=rf,
                                  cv=5)

    clf.fit(X_train, y_train)
    clf_drop.fit(X_train, y_train)
    assert_allclose(clf.predict(X_test), clf_drop.predict(X_test))
    assert_allclose(clf.predict_proba(X_test), clf_drop.predict_proba(X_test))
    assert_allclose(clf.transform(X_test), clf_drop.transform(X_test))
Пример #30
0
def test_predict_proba_on_toy_problem():
    """Calculate predicted probabilities on toy dataset."""
    clf1 = LogisticRegression(random_state=123)
    clf2 = RandomForestClassifier(random_state=123)
    clf3 = GaussianNB()
    X = np.array([[-1.1, -1.5], [-1.2, -1.4], [-3.4, -2.2], [1.1, 1.2]])
    y = np.array([1, 1, 2, 2])

    clf1_res = np.array([[0.59790391, 0.40209609], [0.57622162, 0.42377838],
                         [0.50728456, 0.49271544], [0.40241774, 0.59758226]])

    clf2_res = np.array([[0.8, 0.2], [0.8, 0.2], [0.2, 0.8], [0.3, 0.7]])

    clf3_res = np.array([[0.9985082, 0.0014918], [0.99845843, 0.00154157],
                         [0., 1.], [0., 1.]])

    t00 = (2 * clf1_res[0][0] + clf2_res[0][0] + clf3_res[0][0]) / 4
    t11 = (2 * clf1_res[1][1] + clf2_res[1][1] + clf3_res[1][1]) / 4
    t21 = (2 * clf1_res[2][1] + clf2_res[2][1] + clf3_res[2][1]) / 4
    t31 = (2 * clf1_res[3][1] + clf2_res[3][1] + clf3_res[3][1]) / 4

    eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                        ('gnb', clf3)],
                            voting='soft',
                            weights=[2, 1, 1])
    eclf_res = eclf.fit(X, y).predict_proba(X)

    assert_almost_equal(t00, eclf_res[0][0], decimal=1)
    assert_almost_equal(t11, eclf_res[1][1], decimal=1)
    assert_almost_equal(t21, eclf_res[2][1], decimal=1)
    assert_almost_equal(t31, eclf_res[3][1], decimal=1)

    with pytest.raises(
            AttributeError,
            match="predict_proba is not available when voting='hard'"):
        eclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2),
                                            ('gnb', clf3)],
                                voting='hard')
        eclf.fit(X, y).predict_proba(X)