Пример #1
0
def test_dtype_match_cholesky():
    # Test different alphas in cholesky solver to ensure full coverage.
    # This test is separated from test_dtype_match for clarity.
    rng = np.random.RandomState(0)
    alpha = (1.0, 0.5)

    n_samples, n_features, n_target = 6, 7, 2
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples, n_target)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    # Check type consistency 32bits
    ridge_32 = Ridge(alpha=alpha, solver='cholesky')
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(alpha=alpha, solver='cholesky')
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do all the checks at once, like this is easier to debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_almost_equal(ridge_32.coef_, ridge_64.coef_, decimal=5)
Пример #2
0
def test_sparse_design_with_sample_weights():
    # Sample weights must work with sparse matrices

    n_sampless = [2, 3]
    n_featuress = [3, 2]

    rng = np.random.RandomState(42)

    sparse_matrix_converters = [
        sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix,
        sp.dok_matrix
    ]

    sparse_ridge = Ridge(alpha=1., fit_intercept=False)
    dense_ridge = Ridge(alpha=1., fit_intercept=False)

    for n_samples, n_features in zip(n_sampless, n_featuress):
        X = rng.randn(n_samples, n_features)
        y = rng.randn(n_samples)
        sample_weights = rng.randn(n_samples)**2 + 1
        for sparse_converter in sparse_matrix_converters:
            X_sparse = sparse_converter(X)
            sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights)
            dense_ridge.fit(X, y, sample_weight=sample_weights)

            assert_array_almost_equal(sparse_ridge.coef_,
                                      dense_ridge.coef_,
                                      decimal=6)
Пример #3
0
def test_dtype_match(solver):
    rng = np.random.RandomState(0)
    alpha = 1.0

    n_samples, n_features = 6, 5
    X_64 = rng.randn(n_samples, n_features)
    y_64 = rng.randn(n_samples)
    X_32 = X_64.astype(np.float32)
    y_32 = y_64.astype(np.float32)

    tol = 2 * np.finfo(np.float32).resolution
    # Check type consistency 32bits
    ridge_32 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=tol)
    ridge_32.fit(X_32, y_32)
    coef_32 = ridge_32.coef_

    # Check type consistency 64 bits
    ridge_64 = Ridge(alpha=alpha, solver=solver, max_iter=500, tol=tol)
    ridge_64.fit(X_64, y_64)
    coef_64 = ridge_64.coef_

    # Do the actual checks at once for easier debug
    assert coef_32.dtype == X_32.dtype
    assert coef_64.dtype == X_64.dtype
    assert ridge_32.predict(X_32).dtype == X_32.dtype
    assert ridge_64.predict(X_64).dtype == X_64.dtype
    assert_allclose(ridge_32.coef_, ridge_64.coef_, rtol=1e-4, atol=5e-4)
Пример #4
0
def test_ridge_fit_intercept_sparse_error(solver):
    X, y = _make_sparse_offset_regression(n_features=20, random_state=0)
    X_csr = sp.csr_matrix(X)
    sparse_ridge = Ridge(solver=solver)
    err_msg = "solver='{}' does not support".format(solver)
    with pytest.raises(ValueError, match=err_msg):
        sparse_ridge.fit(X_csr, y)
Пример #5
0
def _test_tolerance(filter_):
    ridge = Ridge(tol=1e-5, fit_intercept=False)
    ridge.fit(filter_(X_diabetes), y_diabetes)
    score = ridge.score(filter_(X_diabetes), y_diabetes)

    ridge2 = Ridge(tol=1e-3, fit_intercept=False)
    ridge2.fit(filter_(X_diabetes), y_diabetes)
    score2 = ridge2.score(filter_(X_diabetes), y_diabetes)

    assert score >= score2
Пример #6
0
def test_regression_scorers():
    # Test regression scorers.
    diabetes = load_diabetes()
    X, y = diabetes.data, diabetes.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = Ridge()
    clf.fit(X_train, y_train)
    score1 = get_scorer('r2')(clf, X_test, y_test)
    score2 = r2_score(y_test, clf.predict(X_test))
    assert_almost_equal(score1, score2)
Пример #7
0
def _test_multi_ridge_diabetes(filter_):
    # simulate several responses
    Y = np.vstack((y_diabetes, y_diabetes)).T
    n_features = X_diabetes.shape[1]

    ridge = Ridge(fit_intercept=False)
    ridge.fit(filter_(X_diabetes), Y)
    assert ridge.coef_.shape == (2, n_features)
    Y_pred = ridge.predict(filter_(X_diabetes))
    ridge.fit(filter_(X_diabetes), y_diabetes)
    y_pred = ridge.predict(filter_(X_diabetes))
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
Пример #8
0
def test_ridge_singular():
    # test on a singular matrix
    rng = np.random.RandomState(0)
    n_samples, n_features = 6, 6
    y = rng.randn(n_samples // 2)
    y = np.concatenate((y, y))
    X = rng.randn(n_samples // 2, n_features)
    X = np.concatenate((X, X), axis=0)

    ridge = Ridge(alpha=0)
    ridge.fit(X, y)
    assert ridge.score(X, y) > 0.9
Пример #9
0
def test_ridge(solver):
    # Ridge regression convergence test using score
    # TODO: for this test to be robust, we should use a dataset instead
    # of np.random.
    rng = np.random.RandomState(0)
    alpha = 1.0

    # With more samples than features
    n_samples, n_features = 6, 5
    y = rng.randn(n_samples)
    X = rng.randn(n_samples, n_features)

    ridge = Ridge(alpha=alpha, solver=solver)
    ridge.fit(X, y)
    assert ridge.coef_.shape == (X.shape[1], )
    assert ridge.score(X, y) > 0.47

    if solver in ("cholesky", "sag"):
        # Currently the only solvers to support sample_weight.
        ridge.fit(X, y, sample_weight=np.ones(n_samples))
        assert ridge.score(X, y) > 0.47

    # With more features than samples
    n_samples, n_features = 5, 10
    y = rng.randn(n_samples)
    X = rng.randn(n_samples, n_features)
    ridge = Ridge(alpha=alpha, solver=solver)
    ridge.fit(X, y)
    assert ridge.score(X, y) > .9

    if solver in ("cholesky", "sag"):
        # Currently the only solvers to support sample_weight.
        ridge.fit(X, y, sample_weight=np.ones(n_samples))
        assert ridge.score(X, y) > 0.9
Пример #10
0
def test_sag_regressor_computed_correctly():
    """tests if the sag regressor is computed correctly"""
    alpha = .1
    n_features = 10
    n_samples = 40
    max_iter = 100
    tol = .000001
    fit_intercept = True
    rng = np.random.RandomState(0)
    X = rng.normal(size=(n_samples, n_features))
    w = rng.normal(size=n_features)
    y = np.dot(X, w) + 2.
    step_size = get_step_size(X, alpha, fit_intercept, classification=False)

    clf1 = Ridge(fit_intercept=fit_intercept,
                 tol=tol,
                 solver='sag',
                 alpha=alpha * n_samples,
                 max_iter=max_iter,
                 random_state=rng)
    clf2 = clone(clf1)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)

    spweights1, spintercept1 = sag_sparse(X,
                                          y,
                                          step_size,
                                          alpha,
                                          n_iter=max_iter,
                                          dloss=squared_dloss,
                                          fit_intercept=fit_intercept,
                                          random_state=rng)

    spweights2, spintercept2 = sag_sparse(X,
                                          y,
                                          step_size,
                                          alpha,
                                          n_iter=max_iter,
                                          dloss=squared_dloss,
                                          sparse=True,
                                          fit_intercept=fit_intercept,
                                          random_state=rng)

    assert_array_almost_equal(clf1.coef_.ravel(),
                              spweights1.ravel(),
                              decimal=3)
    assert_almost_equal(clf1.intercept_, spintercept1, decimal=1)
Пример #11
0
def test_n_iter():
    # Test that self.n_iter_ is correct.
    n_targets = 2
    X, y = X_diabetes, y_diabetes
    y_n = np.tile(y, (n_targets, 1)).T

    for max_iter in range(1, 4):
        for solver in ('sag', 'saga', 'lsqr'):
            reg = Ridge(solver=solver, max_iter=max_iter, tol=1e-12)
            reg.fit(X, y_n)
            assert_array_equal(reg.n_iter_, np.tile(max_iter, n_targets))

    for solver in ('sparse_cg', 'svd', 'cholesky'):
        reg = Ridge(solver=solver, max_iter=1, tol=1e-1)
        reg.fit(X, y_n)
        assert reg.n_iter_ is None
Пример #12
0
def test_ridge_intercept():
    # Test intercept with multiple targets GH issue #708
    rng = np.random.RandomState(0)
    n_samples, n_features = 5, 10
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    Y = np.c_[y, 1. + y]

    ridge = Ridge()

    ridge.fit(X, y)
    intercept = ridge.intercept_

    ridge.fit(X, Y)
    assert_almost_equal(ridge.intercept_[0], intercept)
    assert_almost_equal(ridge.intercept_[1], intercept + 1.)
Пример #13
0
def test_ridge_sample_weights():
    # TODO: loop over sparse data as well
    # Note: parametrizing this test with pytest results in failed
    #       assertions, meaning that is is not extremely robust

    rng = np.random.RandomState(0)
    param_grid = product((1.0, 1e-2), (True, False),
                         ('svd', 'cholesky', 'lsqr', 'sparse_cg'))

    for n_samples, n_features in ((6, 5), (5, 10)):

        y = rng.randn(n_samples)
        X = rng.randn(n_samples, n_features)
        sample_weight = 1.0 + rng.rand(n_samples)

        for (alpha, intercept, solver) in param_grid:

            # Ridge with explicit sample_weight
            est = Ridge(alpha=alpha,
                        fit_intercept=intercept,
                        solver=solver,
                        tol=1e-6)
            est.fit(X, y, sample_weight=sample_weight)
            coefs = est.coef_
            inter = est.intercept_

            # Closed form of the weighted regularized least square
            # theta = (X^T W X + alpha I)^(-1) * X^T W y
            W = np.diag(sample_weight)
            if intercept is False:
                X_aug = X
                I = np.eye(n_features)
            else:
                dummy_column = np.ones(shape=(n_samples, 1))
                X_aug = np.concatenate((dummy_column, X), axis=1)
                I = np.eye(n_features + 1)
                I[0, 0] = 0

            cf_coefs = linalg.solve(
                X_aug.T.dot(W).dot(X_aug) + alpha * I,
                X_aug.T.dot(W).dot(y))

            if intercept is False:
                assert_array_almost_equal(coefs, cf_coefs)
            else:
                assert_array_almost_equal(coefs, cf_coefs[1:])
                assert_almost_equal(inter, cf_coefs[0])
Пример #14
0
def test_ridge_vs_lstsq():
    # On alpha=0., Ridge and OLS yield the same solution.

    rng = np.random.RandomState(0)
    # we need more samples than features
    n_samples, n_features = 5, 4
    y = rng.randn(n_samples)
    X = rng.randn(n_samples, n_features)

    ridge = Ridge(alpha=0., fit_intercept=False)
    ols = LinearRegression(fit_intercept=False)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)

    ridge.fit(X, y)
    ols.fit(X, y)
    assert_almost_equal(ridge.coef_, ols.coef_)
Пример #15
0
def test_toy_ridge_object():
    # Test BayesianRegression ridge classifier
    # TODO: test also n_samples > n_features
    X = np.array([[1], [2]])
    Y = np.array([1, 2])
    reg = Ridge(alpha=0.0)
    reg.fit(X, Y)
    X_test = [[1], [2], [3], [4]]
    assert_almost_equal(reg.predict(X_test), [1., 2, 3, 4])

    assert len(reg.coef_.shape) == 1
    assert type(reg.intercept_) == np.float64

    Y = np.vstack((Y, Y)).T

    reg.fit(X, Y)
    X_test = [[1], [2], [3], [4]]

    assert len(reg.coef_.shape) == 2
    assert type(reg.intercept_) == np.ndarray
Пример #16
0
def test_sag_regressor():
    """tests if the sag regressor performs well"""
    xmin, xmax = -5, 5
    n_samples = 20
    tol = .001
    max_iter = 50
    alpha = 0.1
    rng = np.random.RandomState(0)
    X = np.linspace(xmin, xmax, n_samples).reshape(n_samples, 1)

    # simple linear function without noise
    y = 0.5 * X.ravel()

    clf1 = Ridge(tol=tol,
                 solver='sag',
                 max_iter=max_iter,
                 alpha=alpha * n_samples,
                 random_state=rng)
    clf2 = clone(clf1)
    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    score1 = clf1.score(X, y)
    score2 = clf2.score(X, y)
    assert score1 > 0.99
    assert score2 > 0.99

    # simple linear function with noise
    y = 0.5 * X.ravel() + rng.randn(n_samples, 1).ravel()

    clf1 = Ridge(tol=tol,
                 solver='sag',
                 max_iter=max_iter,
                 alpha=alpha * n_samples)
    clf2 = clone(clf1)
    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    score1 = clf1.score(X, y)
    score2 = clf2.score(X, y)
    score2 = clf2.score(X, y)
    assert score1 > 0.5
    assert score2 > 0.5
Пример #17
0
def test_regressor_matching():
    n_samples = 10
    n_features = 5

    rng = np.random.RandomState(10)
    X = rng.normal(size=(n_samples, n_features))
    true_w = rng.normal(size=n_features)
    y = X.dot(true_w)

    alpha = 1.
    n_iter = 100
    fit_intercept = True

    step_size = get_step_size(X, alpha, fit_intercept, classification=False)
    clf = Ridge(fit_intercept=fit_intercept,
                tol=.00000000001,
                solver='sag',
                alpha=alpha * n_samples,
                max_iter=n_iter)
    clf.fit(X, y)

    weights1, intercept1 = sag_sparse(X,
                                      y,
                                      step_size,
                                      alpha,
                                      n_iter=n_iter,
                                      dloss=squared_dloss,
                                      fit_intercept=fit_intercept)
    weights2, intercept2 = sag(X,
                               y,
                               step_size,
                               alpha,
                               n_iter=n_iter,
                               dloss=squared_dloss,
                               fit_intercept=fit_intercept)

    assert_allclose(weights1, clf.coef_)
    assert_allclose(intercept1, clf.intercept_)
    assert_allclose(weights2, clf.coef_)
    assert_allclose(intercept2, clf.intercept_)
Пример #18
0
def test_sag_pobj_matches_ridge_regression():
    """tests if the sag pobj matches ridge reg"""
    n_samples = 100
    n_features = 10
    alpha = 1.0
    n_iter = 100
    fit_intercept = False
    rng = np.random.RandomState(10)
    X = rng.normal(size=(n_samples, n_features))
    true_w = rng.normal(size=n_features)
    y = X.dot(true_w)

    clf1 = Ridge(fit_intercept=fit_intercept,
                 tol=.00000000001,
                 solver='sag',
                 alpha=alpha,
                 max_iter=n_iter,
                 random_state=42)
    clf2 = clone(clf1)
    clf3 = Ridge(fit_intercept=fit_intercept,
                 tol=.00001,
                 solver='lsqr',
                 alpha=alpha,
                 max_iter=n_iter,
                 random_state=42)

    clf1.fit(X, y)
    clf2.fit(sp.csr_matrix(X), y)
    clf3.fit(X, y)

    pobj1 = get_pobj(clf1.coef_, alpha, X, y, squared_loss)
    pobj2 = get_pobj(clf2.coef_, alpha, X, y, squared_loss)
    pobj3 = get_pobj(clf3.coef_, alpha, X, y, squared_loss)

    assert_array_almost_equal(pobj1, pobj2, decimal=4)
    assert_array_almost_equal(pobj1, pobj3, decimal=4)
    assert_array_almost_equal(pobj3, pobj2, decimal=4)
Пример #19
0
def test_raises_value_error_if_sample_weights_greater_than_1d():
    # Sample weights must be either scalar or 1D

    n_sampless = [2, 3]
    n_featuress = [3, 2]

    rng = np.random.RandomState(42)

    for n_samples, n_features in zip(n_sampless, n_featuress):
        X = rng.randn(n_samples, n_features)
        y = rng.randn(n_samples)
        sample_weights_OK = rng.randn(n_samples)**2 + 1
        sample_weights_OK_1 = 1.
        sample_weights_OK_2 = 2.
        sample_weights_not_OK = sample_weights_OK[:, np.newaxis]
        sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :]

        ridge = Ridge(alpha=1)

        # make sure the "OK" sample weights actually work
        ridge.fit(X, y, sample_weights_OK)
        ridge.fit(X, y, sample_weights_OK_1)
        ridge.fit(X, y, sample_weights_OK_2)

        def fit_ridge_not_ok():
            ridge.fit(X, y, sample_weights_not_OK)

        def fit_ridge_not_ok_2():
            ridge.fit(X, y, sample_weights_not_OK_2)

        assert_raise_message(ValueError,
                             "Sample weights must be 1D array or scalar",
                             fit_ridge_not_ok)

        assert_raise_message(ValueError,
                             "Sample weights must be 1D array or scalar",
                             fit_ridge_not_ok_2)
Пример #20
0
def test_ridge_fit_intercept_sparse(solver):
    X, y = _make_sparse_offset_regression(n_features=20, random_state=0)
    X_csr = sp.csr_matrix(X)

    # for now only sparse_cg can correctly fit an intercept with sparse X with
    # default tol and max_iter.
    # sag is tested separately in test_ridge_fit_intercept_sparse_sag
    # because it requires more iterations and should raise a warning if default
    # max_iter is used.
    # other solvers raise an exception, as checked in
    # test_ridge_fit_intercept_sparse_error
    #
    # "auto" should switch to "sparse_cg" when X is sparse
    # so the reference we use for both ("auto" and "sparse_cg") is
    # Ridge(solver="sparse_cg"), fitted using the dense representation (note
    # that "sparse_cg" can fit sparse or dense data)
    dense_ridge = Ridge(solver='sparse_cg')
    sparse_ridge = Ridge(solver=solver)
    dense_ridge.fit(X, y)
    with pytest.warns(None) as record:
        sparse_ridge.fit(X_csr, y)
    assert len(record) == 0
    assert np.allclose(dense_ridge.intercept_, sparse_ridge.intercept_)
    assert np.allclose(dense_ridge.coef_, sparse_ridge.coef_)
Пример #21
0
def test_ridge_fit_intercept_sparse_sag():
    X, y = _make_sparse_offset_regression(n_features=5,
                                          n_samples=20,
                                          random_state=0,
                                          X_offset=5.)
    X_csr = sp.csr_matrix(X)

    params = dict(alpha=1.,
                  solver='sag',
                  fit_intercept=True,
                  tol=1e-10,
                  max_iter=100000)
    dense_ridge = Ridge(**params)
    sparse_ridge = Ridge(**params)
    dense_ridge.fit(X, y)
    with pytest.warns(None) as record:
        sparse_ridge.fit(X_csr, y)
    assert len(record) == 0
    assert np.allclose(dense_ridge.intercept_,
                       sparse_ridge.intercept_,
                       rtol=1e-4)
    assert np.allclose(dense_ridge.coef_, sparse_ridge.coef_, rtol=1e-4)
    with pytest.warns(UserWarning, match='"sag" solver requires.*'):
        Ridge(solver='sag').fit(X_csr, y)
Пример #22
0
def test_ridge_shapes():
    # Test shape of coef_ and intercept_
    rng = np.random.RandomState(0)
    n_samples, n_features = 5, 10
    X = rng.randn(n_samples, n_features)
    y = rng.randn(n_samples)
    Y1 = y[:, np.newaxis]
    Y = np.c_[y, 1 + y]

    ridge = Ridge()

    ridge.fit(X, y)
    assert ridge.coef_.shape == (n_features, )
    assert ridge.intercept_.shape == ()

    ridge.fit(X, Y1)
    assert ridge.coef_.shape == (1, n_features)
    assert ridge.intercept_.shape == (1, )

    ridge.fit(X, Y)
    assert ridge.coef_.shape == (2, n_features)
    assert ridge.intercept_.shape == (2, )
Пример #23
0
def test_sparse_cg_max_iter():
    reg = Ridge(solver="sparse_cg", max_iter=1)
    reg.fit(X_diabetes, y_diabetes)
    assert reg.coef_.shape[0] == X_diabetes.shape[1]
Пример #24
0
def _test_ridge_diabetes(filter_):
    ridge = Ridge(fit_intercept=False)
    ridge.fit(filter_(X_diabetes), y_diabetes)
    return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5)