Пример #1
0
def test_one_hot_encoder_feature_names():
    enc = OneHotEncoder()
    X = [['Male', 1, 'girl', 2, 3],
         ['Female', 41, 'girl', 1, 10],
         ['Male', 51, 'boy', 12, 3],
         ['Male', 91, 'girl', 21, 30]]

    enc.fit(X)
    feature_names = enc.get_feature_names()
    assert isinstance(feature_names, np.ndarray)

    assert_array_equal(['x0_Female', 'x0_Male',
                        'x1_1', 'x1_41', 'x1_51', 'x1_91',
                        'x2_boy', 'x2_girl',
                        'x3_1', 'x3_2', 'x3_12', 'x3_21',
                        'x4_3',
                        'x4_10', 'x4_30'], feature_names)

    feature_names2 = enc.get_feature_names(['one', 'two',
                                            'three', 'four', 'five'])

    assert_array_equal(['one_Female', 'one_Male',
                        'two_1', 'two_41', 'two_51', 'two_91',
                        'three_boy', 'three_girl',
                        'four_1', 'four_2', 'four_12', 'four_21',
                        'five_3', 'five_10', 'five_30'], feature_names2)

    with pytest.raises(ValueError, match="input_features should have length"):
        enc.get_feature_names(['one', 'two'])
Пример #2
0
def test_one_hot_encoder_feature_names_unicode():
    enc = OneHotEncoder()
    X = np.array([['c❤t1', 'dat2']], dtype=object).T
    enc.fit(X)
    feature_names = enc.get_feature_names()
    assert_array_equal(['x0_c❤t1', 'x0_dat2'], feature_names)
    feature_names = enc.get_feature_names(input_features=['n👍me'])
    assert_array_equal(['n👍me_c❤t1', 'n👍me_dat2'], feature_names)
Пример #3
0
def test_one_hot_encoder_feature_names_drop(drop, expected_names):
    X = [['c', 2, 'a'],
         ['b', 2, 'b']]

    ohe = OneHotEncoder(drop=drop)
    ohe.fit(X)
    feature_names = ohe.get_feature_names()
    assert isinstance(feature_names, np.ndarray)
    assert_array_equal(expected_names, feature_names)