def test_knn(): stream = SEAGenerator(random_state=1) stream.prepare_for_use() learner = KNN(n_neighbors=8, max_window_size=2000, leaf_size=40) cnt = 0 max_samples = 5000 predictions = array('i') correct_predictions = 0 wait_samples = 100 X_batch = [] y_batch = [] while cnt < max_samples: X, y = stream.next_sample() X_batch.append(X[0]) y_batch.append(y[0]) # Test every n samples if (cnt % wait_samples == 0) and (cnt != 0): predictions.append(learner.predict(X)[0]) if y[0] == predictions[-1]: correct_predictions += 1 learner.partial_fit(X, y) cnt += 1 expected_predictions = array('i', [ 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1 ]) assert np.alltrue(predictions == expected_predictions) expected_correct_predictions = 49 assert correct_predictions == expected_correct_predictions expected_info = 'KNN(leaf_size=40, max_window_size=2000, n_neighbors=8, nominal_attributes=None)' assert learner.get_info() == expected_info learner.reset() assert learner.get_info() == expected_info X_batch = np.array(X_batch) y_batch = np.array(y_batch) learner.fit(X_batch[:4500], y_batch[:4500], classes=[0, 1]) predictions = learner.predict(X_batch[4501:4550]) expected_predictions = array('i', [ 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0 ]) assert np.alltrue(predictions == expected_predictions) correct_predictions = sum(predictions == y_batch[4501:4550]) expected_correct_predictions = 49 assert correct_predictions == expected_correct_predictions assert type(learner.predict(X)) == np.ndarray assert type(learner.predict_proba(X)) == np.ndarray
def test_KNN(test_path, package_path): test_file = os.path.join(package_path, 'src/skmultiflow/data/datasets/sea_big.csv') stream = FileStream(test_file, -1, 1) stream.prepare_for_use() learner = KNN(n_neighbors=8, max_window_size=2000, leaf_size=40) cnt = 0 max_samples = 5000 predictions = [] wait_samples = 100 while cnt < max_samples: X, y = stream.next_sample() # Test every n samples if (cnt % wait_samples == 0) and (cnt != 0): predictions.append(learner.predict(X)[0]) learner.partial_fit(X, y) cnt += 1 expected_predictions = [1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0] assert np.alltrue(predictions == expected_predictions)