Пример #1
0
def rakeld_ensemble(vec, label):
    problem_transform_classifier = LabelPowerset(classifier=LinearSVC(),
                                                 require_dense=[False, True])
    classifier = RakelD(classifier=problem_transform_classifier,
                        labelset_size=5)
    classifier.fit(vec, label)
    return classifier
def RAkELd(dataset_train_x, dataset_train_y, dataset_test_x, dataset_test_y,
           base_clasif, num_labels):
    classifier = RakelD(base_classifier=base_clasif, labelset_size=num_labels)

    classifier.fit(dataset_train_x, dataset_train_y)
    predictions = classifier.predict(dataset_test_x)

    Metrics_Accuracy("RAkELd", predictions, dataset_test_y)
def build_Rake(X_train, y_train, X_test, y_test):

    classifier = RakelD(base_classifier=GaussianNB(),
                        base_classifier_require_dense=[True, True],
                        labelset_size=4)

    classifier.fit(X_train, y_train)
    prediction = classifier.predict(X_test)
    print('Test accuracy is {}'.format(accuracy_score(y_test, prediction)))
def RAkELd(dataset_train_x, dataset_train_y, dataset_test_x, dataset_test_y,
           base_clasif, num_labels):
    classifier = RakelD(base_classifier=base_clasif, labelset_size=num_labels)

    start_time = time.time()
    classifier.fit(dataset_train_x, dataset_train_y)
    stop_time = time.time()
    time_lapsed = stop_time - start_time
    predictions = classifier.predict(dataset_test_x)

    Metrics_Accuracy("RAkELd", predictions, dataset_test_y)
    print("Execution time: {}s".format(time_lapsed))
Пример #5
0
def run(classifier, train_test_set):
    X_train, X_test, y_train, y_test = train_test_set

    # init model and fit to train data
    rakel = RakelD(base_classifier=classifier)
    rakel.fit(X_train, y_train)

    # make predictions
    y_pred = rakel.predict(X_test)
    print('\n--------Rakel with {:}'.format(rakel))

    return y_test, y_pred
Пример #6
0
def RAkEL_fit(clfs, steps, X_train, y_train, X_test, y_test):
    metrics = {}
    for key, clf in zip(clfs.keys(), clfs.values()):
        acc = []
        prec_micro = []
        prec_macro = []
        hamm_loss = []
        f1_micro = []
        f1_macro = []
        print('Fitting RAkEL with Base Classifier: %s' % key)
        for k in steps:
            classifier = RakelD(base_classifier=clf, labelset_size=k)
            classifier.fit(X_train, y_train)
            prediction = classifier.predict(X_test)
            acc.append(accuracy_score(y_test, prediction))
            prec_micro.append(precision_score(y_test, prediction, average='micro'))
            prec_macro.append(precision_score(y_test, prediction, average='macro'))
            hamm_loss.append(hamming_loss(y_test, prediction))
            f1_micro.append(f1_score(y_test, prediction, average='micro'))
            f1_macro.append(f1_score(y_test, prediction, average='macro'))

        metrics[key] = [acc, hamm_loss, f1_micro, f1_macro, prec_micro, prec_macro]

    return metrics
Пример #7
0
from sklearn.metrics import f1_score
from sklearn.metrics import jaccard_similarity_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score

from sklearn.naive_bayes import GaussianNB
from skmultilearn.ensemble import RakelD
from datetime import timedelta
import time
start = time.time()

classifier = RakelD(base_classifier=GaussianNB(),
                    base_classifier_require_dense=[True, True],
                    labelset_size=4)

classifier.fit(x_train, y_train)
predictions = classifier.predict(x_test)

# accuracy
print("Accuracy = ", accuracy_score(y_test, predictions))
print("\n")
print("F1 = ", f1_score(y_test, predictions, average='micro'))
print("\n")

print("Jaccard = ", jaccard_similarity_score(y_test, predictions))
print("\n")

print("Precision = ", precision_score(y_test, predictions, average='micro'))
print("\n")

print("Recall = ", recall_score(y_test, predictions, average='micro'))