Пример #1
0
def test_plots_work_without_cat():
    """Basic smoke tests to make sure plotting doesn't crash."""
    SPACE = [
        Integer(1, 20, name='max_depth'),
        Integer(2, 100, name='min_samples_split'),
        Integer(5, 30, name='min_samples_leaf'),
        Integer(1, 30, name='max_features'),
    ]

    def objective(params):
        clf = DecisionTreeClassifier(random_state=3,
                                     **{
                                         dim.name: val
                                         for dim, val in zip(SPACE, params)
                                         if dim.name != 'dummy'
                                     })
        return -np.mean(cross_val_score(clf, *load_breast_cancer(True)))

    res = gp_minimize(objective, SPACE, n_calls=10, random_state=3)
    plots.plot_convergence(res)
    plots.plot_evaluations(res)
    plots.plot_objective(res)
    plots.plot_objective(res, minimum='expected_minimum')
    plots.plot_objective(res,
                         sample_source='expected_minimum',
                         n_minimum_search=10)
    plots.plot_objective(res, sample_source='result')
    plots.plot_regret(res)
Пример #2
0
def test_plots_work():
    """Basic smoke tests to make sure plotting doesn't crash."""
    SPACE = [
        Integer(1, 20, name='max_depth'),
        Integer(2, 100, name='min_samples_split'),
        Integer(5, 30, name='min_samples_leaf'),
        Integer(1, 30, name='max_features'),
        Categorical(['gini', 'entropy'], name='criterion'),
        Categorical(list('abcdefghij'), name='dummy'),
    ]

    def objective(params):
        clf = DecisionTreeClassifier(random_state=3,
                                     **{
                                         dim.name: val
                                         for dim, val in zip(SPACE, params)
                                         if dim.name != 'dummy'
                                     })
        return -np.mean(cross_val_score(clf, *load_breast_cancer(True)))

    res = gp_minimize(objective, SPACE, n_calls=10, random_state=3)
    plots.plot_convergence(res)
    plots.plot_evaluations(res)
    plots.plot_objective(res)
    plots.plot_regret(res)
Пример #3
0
def plot_skopt_regret(opt_res, path):
    """Plots the regret plot from the skopt package.

    Args:
        opt_res (scipy.optimize.OptimizeResult): Optimization result object.
        path (str): Directory at which to save plot.
    """
    if not os.path.exists(path):
        os.makedirs(path)
    fig = plt.figure()
    skplot.plot_regret(opt_res, ax=None, true_minumum=None, yscale=None)
    fig = plt.gcf()
    fig.tight_layout()
    fig.savefig(path + "regret")
    fig.show()
Пример #4
0
def make_plots(results, dir):
    import matplotlib
    import matplotlib.pyplot as plt
    # https://matplotlib.org/faq/usage_faq.html#non-interactive-example
    # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

    if not dir.exists():
        dir.mkdir(parents=True, exist_ok=True)

    # WIP: there is currently no support for plotting categorical variables...
    # You have to manually checkout this pull request:
    #   git pr 675  # install https://github.com/tj/git-extras
    #   git pull origin master
    # https://github.com/scikit-optimize/scikit-optimize/pull/675
    from skopt.plots import plot_convergence
    _ = plot_convergence(results)
    plt.savefig(dir / 'plot_convergence.png')

    from skopt.plots import plot_objective
    _ = plot_objective(results)
    plt.savefig(dir / 'plot_objective.png')

    from skopt.plots import plot_regret
    _ = plot_regret(results)
    plt.savefig(dir / 'plot_regret.png')

    from skopt.plots import plot_evaluations
    _ = plot_evaluations(results)
    plt.savefig(dir / 'plot_evaluations.png')


# compare convergence...
# https://github.com/scikit-optimize/scikit-optimize/blob/master/examples/strategy-comparison.ipynb
# for all runs...
# from skopt.plots import plot_convergence
# plot = plot_convergence(("dummy_minimize", dummy_res),
#                         ("gp_minimize", gp_res),
#                         ("forest_minimize('rf')", rf_res),
#                         ("forest_minimize('et)", et_res),
#                         true_minimum=0.397887, yscale="log")
# plot.legend(loc="best", prop={'size': 6}, numpoints=1);

# parallel optimization
# in the yaml:
# parallel: X (if you have a small dataset.self.)
# https://github.com/scikit-optimize/scikit-optimize/blob/master/examples/parallel-optimization.ipynb
# from sklearn.externals.joblib import Parallel, delayed
# x = optimizer.ask(n_points=4)  # x is a list of n_points points
# y = Parallel()(delayed(branin)(v) for v in x)  # evaluate points in parallel
# optimizer.tell(x, y)

# checkpoints?
# https://github.com/scikit-optimize/scikit-optimize/blob/master/examples/interruptible-optimization.ipynb
# https://github.com/scikit-optimize/scikit-optimize/blob/master/examples/store-and-load-results.ipynb
# poor man's solution:
# import pickle
# with open('my-optimizer.pkl', 'wb') as f:
#     pickle.dump(opt, f)
# with open('my-optimizer.pkl', 'rb') as f:
#     opt_restored = pickle.load(f)
Пример #5
0
    def plot_regret(self, *args, **kwargs):
        """Calls skopt.plots.plot_regret."""
        def _coconut_mock_13(self, *args, **kwargs):
            return self, args, kwargs

        while True:
            from skopt.plots import plot_regret
            try:
                _coconut_tre_check_3 = plot_regret is _coconut_recursive_func_32
            except _coconut.NameError:
                _coconut_tre_check_3 = False
            if _coconut_tre_check_3:
                self, args, kwargs = _coconut_mock_13(self.get_skopt_result(),
                                                      *args, **kwargs)
                continue
            else:
                return plot_regret(self.get_skopt_result(), *args, **kwargs)

        return None
Пример #6
0
def _log_plot_regret(results, experiment, name='diagnostics'):
    expect_not_a_run(experiment)
    fig, ax = plt.subplots()
    sk_plots.plot_regret(results, ax=ax)
    experiment.log_image(name, fig)
Пример #7
0
def test_plots_work():
    """Basic smoke tests to make sure plotting doesn't crash."""
    SPACE = [
        Integer(1, 20, name='max_depth'),
        Integer(2, 100, name='min_samples_split'),
        Integer(5, 30, name='min_samples_leaf'),
        Integer(1, 30, name='max_features'),
        Categorical(['gini', 'entropy'], name='criterion'),
        Categorical(list('abcdefghij'), name='dummy'),
    ]

    def objective(params):
        clf = DecisionTreeClassifier(random_state=3,
                                     **{
                                         dim.name: val
                                         for dim, val in zip(SPACE, params)
                                         if dim.name != 'dummy'
                                     })
        return -np.mean(cross_val_score(clf, *load_breast_cancer(True)))

    res = gp_minimize(objective, SPACE, n_calls=10, random_state=3)

    x = [[11, 52, 8, 14, 'entropy', 'f'], [14, 90, 10, 2, 'gini', 'a'],
         [7, 90, 6, 14, 'entropy', 'f']]
    samples = res.space.transform(x)
    xi_ = [1., 10.5, 20.]
    yi_ = [-0.9240883492576596, -0.9240745890422687, -0.9240586402439884]
    xi, yi = partial_dependence_1D(res.space,
                                   res.models[-1],
                                   0,
                                   samples,
                                   n_points=3)
    assert_array_almost_equal(xi, xi_)
    assert_array_almost_equal(yi, yi_, 1e-3)

    xi_ = [0, 1]
    yi_ = [-0.9241087603770617, -0.9240188905968352]
    xi, yi = partial_dependence_1D(res.space,
                                   res.models[-1],
                                   4,
                                   samples,
                                   n_points=3)
    assert_array_almost_equal(xi, xi_)
    assert_array_almost_equal(yi, yi_, 1e-3)

    xi_ = [0, 1]
    yi_ = [1., 10.5, 20.]
    zi_ = [[-0.92412562, -0.92403575], [-0.92411186, -0.92402199],
           [-0.92409591, -0.92400604]]
    xi, yi, zi = partial_dependence_2D(res.space,
                                       res.models[-1],
                                       0,
                                       4,
                                       samples,
                                       n_points=3)
    assert_array_almost_equal(xi, xi_)
    assert_array_almost_equal(yi, yi_)
    assert_array_almost_equal(zi, zi_, 1e-3)

    x_min, f_min = expected_minimum_random_sampling(res, random_state=1)
    x_min2, f_min2 = expected_minimum(res, random_state=1)

    x_min, f_min = expected_minimum_random_sampling(res, random_state=1)
    x_min2, f_min2 = expected_minimum(res, random_state=1)

    assert x_min == x_min2
    assert f_min == f_min2

    plots.plot_convergence(res)
    plots.plot_evaluations(res)
    plots.plot_objective(res)
    plots.plot_objective(res, dimensions=["a", "b", "c", "d", "e", "f"])
    plots.plot_objective(res, minimum='expected_minimum_random')
    plots.plot_objective(res,
                         sample_source='expected_minimum_random',
                         n_minimum_search=10000)
    plots.plot_objective(res, sample_source='result')
    plots.plot_regret(res)
    plots.plot_objective_2D(res, 0, 4)
    plots.plot_histogram(res, 0, 4)
    def save_hpo_plot_regret(hpo_result: 'Skopt HPO Object', path: str) -> None:
        """Plots and saves regret from HPO process"""

        plt.figure(figsize=(18,10))
        plot_regret(hpo_result)
        plt.savefig(path, bbox_inches='tight', pad_inches=1)