Пример #1
0
    def test_categorical_features(self, lung_X, lung_y,
                                  respect_categorical_features):
        # add a categorical feature
        categorical_col = np.atleast_2d(
            np.array([random.choice([0, 1]) for _ in range(lung_X.shape[0])]))
        lung_X_c = np.hstack((lung_X, categorical_col.transpose()))
        categorical_features = [lung_X.shape[1]]

        rfs = RangerForestSurvival(
            respect_categorical_features=respect_categorical_features,
            categorical_features=categorical_features,
        )

        if respect_categorical_features not in [
                "partition", "ignore", "order"
        ]:
            with pytest.raises(ValueError):
                rfs.fit(lung_X_c, lung_y)
            return

        rfs.fit(lung_X_c, lung_y)

        if respect_categorical_features in ("ignore", "order"):
            assert rfs.categorical_features_ == []
        else:
            assert rfs.categorical_features_ == [
                str(c).encode() for c in categorical_features
            ]
Пример #2
0
    def test_importance(
        self, lung_X, lung_y, importance, scale_permutation_importance, local_importance
    ):
        forest = RangerForestSurvival(
            importance=importance,
            scale_permutation_importance=scale_permutation_importance,
            local_importance=local_importance,
        )

        if importance not in ["none", "impurity", "impurity_corrected", "permutation"]:
            with pytest.raises(ValueError):
                forest.fit(lung_X, lung_y)
            return

        forest.fit(lung_X, lung_y)
        if importance == "none":
            assert forest.importance_mode_ == 0
        elif importance == "impurity":
            assert forest.importance_mode_ == 1
        elif importance == "impurity_corrected":
            assert forest.importance_mode_ == 5
        elif importance == "permutation":
            if local_importance:
                assert forest.importance_mode_ == 6
            elif scale_permutation_importance:
                assert forest.importance_mode_ == 2
            else:
                assert forest.importance_mode_ == 3
Пример #3
0
    def test_sample_fraction_replace(self, lung_X, lung_y, replace):
        forest = RangerForestSurvival(replace=replace)
        forest.fit(lung_X, lung_y)

        if replace:
            assert forest.sample_fraction_ == [1.0]
        else:
            assert forest.sample_fraction_ == [0.632]
Пример #4
0
 def test_verbose(self, lung_X, lung_y, verbose, capfd):
     forest = RangerForestSurvival(verbose=verbose)
     forest.fit(lung_X, lung_y)
     captured = capfd.readouterr()
     if verbose:
         assert len(captured.out) > 0
     else:
         assert len(captured.out) == 0
Пример #5
0
    def test_sample_fraction(self, lung_X, lung_y):
        forest = RangerForestSurvival(sample_fraction=0.69)
        forest.fit(lung_X, lung_y)
        assert forest.sample_fraction_ == [0.69]

        # test with single record
        lung_X_record = lung_X.values[0:1, :]
        pred = forest.predict(lung_X_record)
        assert len(pred) == 1
Пример #6
0
 def test_serialize(self, lung_X, lung_y):
     tf = tempfile.TemporaryFile()
     forest = RangerForestSurvival(n_estimators=N_ESTIMATORS)
     forest.fit(lung_X, lung_y)
     pickle.dump(forest, tf)
     tf.seek(0)
     new_forest = pickle.load(tf)
     pred = new_forest.predict(lung_X)
     assert len(pred) == lung_X.shape[0]
Пример #7
0
 def test_fit(self, lung_X, lung_y):
     forest = RangerForestSurvival(n_estimators=N_ESTIMATORS)
     with pytest.raises(NotFittedError):
         check_is_fitted(forest)
     forest.fit(lung_X, lung_y)
     check_is_fitted(forest)
     assert hasattr(forest, "event_times_")
     assert hasattr(forest, "cumulative_hazard_function_")
     assert hasattr(forest, "ranger_forest_")
     assert hasattr(forest, "n_features_in_")
Пример #8
0
    def test_sample_weight(self, lung_X, lung_y):
        forest_w = RangerForestSurvival()
        forest_w.fit(lung_X, lung_y, sample_weight=[1] * len(lung_y))
        forest = RangerForestSurvival()
        forest.fit(lung_X, lung_y)

        pred_w = forest_w.predict(lung_X)
        pred = forest.predict(lung_X)

        np.testing.assert_array_equal(pred.reshape(-1, 1), pred_w.reshape(-1, 1))
Пример #9
0
    def test_predict(self, lung_X, lung_y):
        forest = RangerForestSurvival(n_estimators=N_ESTIMATORS)
        forest.fit(lung_X, lung_y)
        pred = forest.predict(lung_X)
        assert len(pred) == lung_X.shape[0]

        # test with single record
        lung_X_record = lung_X.values[0:1, :]
        pred = forest.predict(lung_X_record)
        assert len(pred) == 1
Пример #10
0
 def test_estimators_(self, lung_X, lung_y):
     forest = RangerForestSurvival(n_estimators=10)
     with pytest.raises(AttributeError):
         _ = forest.estimators_
     forest.fit(lung_X, lung_y)
     with pytest.raises(ValueError):
         _ = forest.estimators_
     forest = RangerForestSurvival(n_estimators=10, enable_tree_details=True)
     forest.fit(lung_X, lung_y)
     estimators = forest.estimators_
     assert len(estimators) == 10
     assert isinstance(estimators[0], RangerTreeSurvival)
     check_is_fitted(estimators[0])
Пример #11
0
    def test_regularization(self, lung_X, lung_y):
        forest = RangerForestSurvival()
        forest.fit(lung_X, lung_y)
        assert forest.regularization_factor_ == []
        assert not forest.use_regularization_factor_

        # vector must be between 0 and 1 and length matching feature num
        for r in [[1.1], [-0.1], [1, 1]]:
            forest = RangerForestSurvival(regularization_factor=r)
            with pytest.raises(ValueError):
                forest.fit(lung_X, lung_y)

        # vector of ones isn't applied
        forest = RangerForestSurvival(regularization_factor=[1] * lung_X.shape[1])
        forest.fit(lung_X, lung_y)
        assert forest.regularization_factor_ == []
        assert not forest.use_regularization_factor_

        # regularization vector is used
        reg = [0.5]
        forest = RangerForestSurvival(regularization_factor=reg, n_jobs=2)
        # warns if n_jobs is not one since parallelization can't be used
        with pytest.warns(Warning):
            forest.fit(lung_X, lung_y)
        assert forest.n_jobs_ == 1
        assert forest.regularization_factor_ == reg
        assert forest.use_regularization_factor_
Пример #12
0
 def test_get_estimator(self, lung_X, lung_y):
     forest = RangerForestSurvival(n_estimators=10)
     with pytest.raises(NotFittedError):
         _ = forest.get_estimator(idx=0)
     forest.fit(lung_X, lung_y)
     with pytest.raises(ValueError):
         _ = forest.get_estimator(0)
     forest = RangerForestSurvival(n_estimators=10, enable_tree_details=True)
     forest.fit(lung_X, lung_y)
     estimator = forest.get_estimator(0)
     estimator.predict(lung_X)
     assert isinstance(estimator, RangerTreeSurvival)
     with pytest.raises(IndexError):
         _ = forest.get_estimator(idx=20)
Пример #13
0
    def test_importance_pvalues(self, lung_X_mod, lung_y, importance, mod):
        rfs = RangerForestSurvival(importance=importance)
        np.random.seed(42)

        if importance not in [
                "none", "impurity", "impurity_corrected", "permutation"
        ]:
            with pytest.raises(ValueError):
                rfs.fit(lung_X_mod, lung_y)
            return

        if not importance == "impurity_corrected":
            rfs.fit(lung_X_mod, lung_y)
            with pytest.raises(ValueError):
                rfs.get_importance_pvalues()
            return

        # Test error for no non-negative importance values
        if mod == "none":
            rfs.fit(lung_X_mod, lung_y)
            with pytest.raises(ValueError):
                rfs.get_importance_pvalues()
            return

        rfs.fit(lung_X_mod, lung_y)
        assert len(rfs.get_importance_pvalues()) == lung_X_mod.shape[1]
Пример #14
0
    def test_feature_importances_(self, lung_X, lung_y, importance, local_importance):
        forest = RangerForestSurvival(
            importance=importance, local_importance=local_importance
        )
        with pytest.raises(AttributeError):
            _ = forest.feature_importances_

        if importance == "INVALID":
            with pytest.raises(ValueError):
                forest.fit(lung_X, lung_y)
            return

        forest.fit(lung_X, lung_y)
        if importance == "none":
            with pytest.raises(ValueError):
                _ = forest.feature_importances_
        else:
            assert len(forest.feature_importances_) == lung_X.shape[1]
Пример #15
0
    def test_categorical_features(self, lung_X, lung_y, respect_categorical_features):
        # add a categorical feature
        categorical_col = np.atleast_2d(
            np.array([random.choice([0, 1]) for _ in range(lung_X.shape[0])])
        )
        lung_X_c = np.hstack((lung_X, categorical_col.transpose()))
        categorical_features = [lung_X.shape[1]]

        forest = RangerForestSurvival(
            respect_categorical_features=respect_categorical_features,
        )

        if respect_categorical_features not in ["partition", "ignore", "order"]:
            with pytest.raises(ValueError):
                forest.fit(lung_X_c, lung_y, categorical_features=categorical_features)
            return

        forest.fit(lung_X_c, lung_y, categorical_features=categorical_features)
        forest.predict(lung_X_c)
Пример #16
0
    def test_split_rule(self, lung_X, lung_y, split_rule):
        forest = RangerForestSurvival(split_rule=split_rule)
        assert forest.criterion == split_rule

        if split_rule not in ["logrank", "extratrees", "C", "C_ignore_ties", "maxstat"]:
            with pytest.raises(ValueError):
                forest.fit(lung_X, lung_y)
            return

        forest.fit(lung_X, lung_y)

        if split_rule == "logrank":
            assert forest.split_rule_ == 1
        elif split_rule == "extratrees":
            assert forest.split_rule_ == 5
        elif split_rule == "C":
            assert forest.split_rule_ == 2
        elif split_rule == "C_ignore_ties":
            assert forest.split_rule_ == 3
        elif split_rule == "maxstat":
            assert forest.split_rule_ == 4

        if split_rule != "extratrees":
            forest = RangerForestSurvival(split_rule=split_rule, num_random_splits=2)
            with pytest.raises(ValueError):
                forest.fit(lung_X, lung_y)
Пример #17
0
    def test_inbag(self, lung_X, lung_y):
        inbag = [[1, 2, 3], [2, 3, 4]]
        forest = RangerForestSurvival(n_estimators=2, inbag=inbag)
        forest.fit(lung_X, lung_y)

        # inbag list different length from n_estimators
        forest = RangerForestSurvival(n_estimators=1, inbag=inbag)
        with pytest.raises(ValueError):
            forest.fit(lung_X, lung_y)

        # can't use inbag with sample weight
        forest = RangerForestSurvival(inbag=inbag)
        with pytest.raises(ValueError):
            forest.fit(lung_X, lung_y, sample_weight=[1] * len(lung_y))

        # can't use class sampling and inbag
        forest = RangerForestSurvival(inbag=inbag, sample_fraction=[1, 1])
        with pytest.raises(ValueError):
            forest.fit(lung_X, lung_y)
Пример #18
0
    def test_split_select_weights(self, lung_X, lung_y):
        n_trees = 10
        weights = [0.1] * lung_X.shape[1]
        forest = RangerForestSurvival(n_estimators=n_trees,)
        forest.fit(lung_X, lung_y, split_select_weights=weights)

        weights = [0.1] * (lung_X.shape[1] - 1)
        forest = RangerForestSurvival(n_estimators=n_trees)

        with pytest.raises(RuntimeError):
            forest.fit(lung_X, lung_y, split_select_weights=weights)

        weights = [[0.1] * (lung_X.shape[1])] * n_trees
        forest = RangerForestSurvival(n_estimators=n_trees)
        forest.fit(lung_X, lung_y, split_select_weights=weights)

        weights = [[0.1] * (lung_X.shape[1])] * (n_trees + 1)
        forest = RangerForestSurvival(n_estimators=n_trees)
        with pytest.raises(RuntimeError):
            forest.fit(lung_X, lung_y, split_select_weights=weights)
Пример #19
0
    def test_mtry(self, lung_X, lung_y, mtry):
        forest = RangerForestSurvival(mtry=mtry)

        if callable(mtry) and mtry(5) > 5:
            with pytest.raises(ValueError):
                forest.fit(lung_X, lung_y)
            return
        elif not callable(mtry) and (mtry < 0 or mtry > lung_X.shape[0]):
            with pytest.raises(ValueError):
                forest.fit(lung_X, lung_y)
            return

        forest.fit(lung_X, lung_y)
        if callable(mtry):
            assert forest.mtry_ == mtry(lung_X.shape[1])
        else:
            assert forest.mtry_ == mtry
Пример #20
0
 def test_predict_cumulative_hazard_function(self, lung_X, lung_y):
     rfs = RangerForestSurvival(n_estimators=N_ESTIMATORS)
     rfs.fit(lung_X, lung_y)
     pred = rfs.predict_cumulative_hazard_function(lung_X)
     assert len(pred) == lung_X.shape[0]
Пример #21
0
 def test_clone(self, lung_X, lung_y):
     forest = RangerForestSurvival(n_estimators=N_ESTIMATORS)
     forest.fit(lung_X, lung_y)
     clone(forest)
Пример #22
0
 def test_clone(self, lung_X, lung_y):
     rfs = RangerForestSurvival(n_estimators=N_ESTIMATORS)
     rfs.fit(lung_X, lung_y)
     clone(rfs)
Пример #23
0
 def test_predict_survival_function(self, lung_X, lung_y):
     forest = RangerForestSurvival(n_estimators=N_ESTIMATORS)
     forest.fit(lung_X, lung_y)
     pred = forest.predict_survival_function(lung_X)
     assert len(pred) == lung_X.shape[0]
Пример #24
0
 def test_always_split_features(self, lung_X, lung_y):
     forest = RangerForestSurvival()
     forest.fit(lung_X, lung_y, always_split_features=[0])
     # feature 0 is in every tree split
     for tree in forest.ranger_forest_["forest"]["split_var_ids"]:
         assert 0 in tree