Пример #1
0
def test_single_dataset_single_strategy_against_sklearn(
        dataset, cv, metric_func, estimator, results_cls, tmpdir):
    """Test against sklearn."""
    # set up orchestration
    task = TSCTask(target="class_val")

    # create strategies
    clf = make_reduction_pipeline(estimator)
    strategy = TSCStrategy(clf)

    # result backend
    if results_cls in [HDDResults]:
        # for hard drive results, create temporary directory using pytest's
        # tmpdir fixture
        tempdir = tmpdir.mkdir("results/")
        path = tempdir.dirpath()
        results = results_cls(path=path)
    elif results_cls in [RAMResults]:
        results = results_cls()
    else:
        raise ValueError()

    orchestrator = Orchestrator(datasets=[dataset],
                                tasks=[task],
                                strategies=[strategy],
                                cv=cv,
                                results=results)
    orchestrator.fit_predict(save_fitted_strategies=False)

    evaluator = Evaluator(results)

    # create metric classes for evaluation and set metric kwargs
    if metric_func in [accuracy_score]:
        kwargs = {}  # empty kwargs for simple pairwise metrics
        metric = PairwiseMetric(func=metric_func, name="metric")
    elif metric_func in [f1_score]:
        kwargs = {"average": "macro"}  # set kwargs for composite metrics
        metric = AggregateMetric(func=metric_func, name="metric", **kwargs)
    else:
        raise ValueError()

    metrics = evaluator.evaluate(metric=metric)
    actual = metrics["metric_mean"].iloc[0]

    # compare against sklearn cross_val_score
    data = dataset.load()  # load data
    X = data.loc[:, task.features]
    y = data.loc[:, task.target]
    expected = cross_val_score(clf,
                               X,
                               y,
                               scoring=make_scorer(metric_func, **kwargs),
                               cv=cv).mean()

    # compare results
    np.testing.assert_array_equal(actual, expected)
Пример #2
0
def test_stat():
    """Test sign ranks."""
    data = load_gunpoint(split="train", return_X_y=False)
    dataset = RAMDataset(dataset=data, name="gunpoint")
    task = TSCTask(target="class_val")

    fc = ComposableTimeSeriesForestClassifier(n_estimators=1, random_state=1)
    strategy_fc = TSCStrategy(fc, name="tsf")
    pf = KNeighborsTimeSeriesClassifier()
    strategy_pf = TSCStrategy(pf, name="pf")

    # result backend
    results = RAMResults()
    orchestrator = Orchestrator(
        datasets=[dataset],
        tasks=[task],
        strategies=[strategy_pf, strategy_fc],
        cv=SingleSplit(random_state=1),
        results=results,
    )

    orchestrator.fit_predict(save_fitted_strategies=False)

    analyse = Evaluator(results)
    metric = PairwiseMetric(func=accuracy_score, name="accuracy")
    _ = analyse.evaluate(metric=metric)

    ranks = analyse.rank(ascending=True)
    pf_rank = ranks.loc[ranks.strategy == "pf",
                        "accuracy_mean_rank"].item()  # 1
    fc_rank = ranks.loc[ranks.strategy == "tsf",
                        "accuracy_mean_rank"].item()  # 2
    rank_array = [pf_rank, fc_rank]
    rank_array_test = [1, 2]
    _, sign_test_df = analyse.sign_test()

    sign_array = [
        [sign_test_df["pf"][0], sign_test_df["pf"][1]],
        [sign_test_df["tsf"][0], sign_test_df["tsf"][1]],
    ]
    sign_array_test = [[1, 1], [1, 1]]
    np.testing.assert_equal([rank_array, sign_array],
                            [rank_array_test, sign_array_test])
Пример #3
0
HOME = os.path.expanduser("~")
DATA_PATH = os.path.join(HOME, "Documents/Research/data/Univariate_ts")
RESULTS_PATH = "results"

# Alternatively, we can use a helper function to create them automatically
datasets = make_datasets(path=DATA_PATH,
                         dataset_cls=UEADataset,
                         names=UNIVARIATE_DATASETS)
tasks = [TSCTask(target="target") for _ in range(len(datasets))]

results = HDDResults(path=RESULTS_PATH)

orchestrator = Orchestrator(
    datasets=datasets,
    tasks=tasks,
    strategies=STRATEGIES,
    cv=PresplitFilesCV(cv=UEAStratifiedCV(n_splits=30)),
    results=results)
orchestrator.fit_predict(save_fitted_strategies=False,
                         verbose=True,
                         overwrite_predictions=True,
                         save_timings=True)

evaluator = Evaluator(results=results)
metric = PairwiseMetric(func=accuracy_score, name="accuracy")
evaluator.evaluate(metric)
evaluator.metrics_by_strategy_dataset.to_csv(os.path.join(
    RESULTS_PATH, "accuracy.csv"),
                                             header=True)
Пример #4
0
def evaluator_setup(score_function):
    evaluator = Evaluator(dummy_results())
    metric = PairwiseMetric(func=score_function, name="score_function")
    metrics_by_strategy = evaluator.evaluate(metric=metric)

    return evaluator, metrics_by_strategy
Пример #5
0
#!/usr/bin/env python3 -u

__author__ = ["Markus Löning"]

import os
from joblib import load
from sktime.benchmarking.evaluation import Evaluator
from sktime.benchmarking.metrics import PairwiseMetric
from sklearn.metrics import accuracy_score

# set up paths
HOME = os.path.expanduser("~")
RESULTS_PATH = os.path.join(
    HOME, "Documents/Research/toolboxes/sktime-benchmarking/results/rotf")
assert os.path.exists(HOME)
assert os.path.exists(RESULTS_PATH)

# load results file
results = load(os.path.join(RESULTS_PATH, "results.pickle"))

# evaluate predictions
evaluator = Evaluator(results=results)
metric = PairwiseMetric(func=accuracy_score, name="accuracy")
metrics_by_strategy = evaluator.evaluate(metric=metric)

# save scores
evaluator.metrics_by_strategy_dataset.to_csv(os.path.join(
    RESULTS_PATH, "accuracy.csv"),
                                             header=True)