def test_weasel_on_gunpoint(): # load gunpoint data X_train, y_train = load_gunpoint(split="train", return_X_y=True) X_test, y_test = load_gunpoint(split="test", return_X_y=True) # train WEASEL weasel = WEASEL(random_state=1, binning_strategy="equi-depth") weasel.fit(X_train, y_train) score = weasel.score(X_test, y_test) # print(score) assert score >= 0.99
def test_weasel_on_power_demand(): # load power demand data X_train, y_train = load_italy_power_demand(split="train", return_X_y=True) X_test, y_test = load_italy_power_demand(split="test", return_X_y=True) # train WEASEL weasel = WEASEL(random_state=1, binning_strategy="kmeans") weasel.fit(X_train, y_train) score = weasel.score(X_test, y_test) # print(score) assert score >= 0.94
def test_weasel_on_power_demand(): # load power demand data X_train, y_train = load_italy_power_demand(split='train', return_X_y=True) X_test, y_test = load_italy_power_demand(split='test', return_X_y=True) # train WEASEL weasel = WEASEL(random_state=47) weasel.fit(X_train, y_train) score = weasel.score(X_test, y_test) print(score) assert (score >= 0.94)
def test_weasel_on_gunpoint(): # load gunpoint data X_train, y_train = load_gunpoint(split="train", return_X_y=True) X_test, y_test = load_gunpoint(split="test", return_X_y=True) # indices = np.random.RandomState(0).permutation(10) # train WEASEL weasel = WEASEL(random_state=1379) weasel.fit(X_train, y_train) score = weasel.score(X_test, y_test) # print(score) assert score >= 0.99
def test_weasel_on_unit_test_data(): """Test of WEASEL on unit test data.""" # load unit test data X_train, y_train = load_unit_test(split="train", return_X_y=True) X_test, y_test = load_unit_test(split="test", return_X_y=True) indices = np.random.RandomState(0).choice(len(y_train), 10, replace=False) # train WEASEL weasel = WEASEL(random_state=0, window_inc=4) weasel.fit(X_train, y_train) # assert probabilities are the same probas = weasel.predict_proba(X_test.iloc[indices]) testing.assert_array_almost_equal(probas, weasel_unit_test_probas, decimal=2)