def _run_aggr_dist_test(x, y): # default parameters default_params = AggrDist(transformer=ScipyDist()) default_params_transformation = np.around((default_params.transform(x, y)), decimals=3) assert np.array_equal( np.array([ [1.649, 1.525, 1.518, 1.934, 1.636], [1.39, 1.395, 1.313, 1.617, 1.418], [1.492, 1.489, 1.323, 1.561, 1.437], [1.559, 1.721, 1.544, 1.589, 1.642], ]), default_params_transformation, ), "Error occurred testing on default parameters, result is not correct" for transformer in PAIRWISE_TRANSFORMERS_TAB: for aggfunc in AGGFUNCS: aggfunc_params = AggrDist(transformer=transformer(), aggfunc=aggfunc) aggfunc_params_transformation = aggfunc_params.transform(x, y) assert isinstance( aggfunc_params_transformation, np.ndarray), (f"Error occurred testing on following parameters" f"transformer={transformer}, aggfunc={aggfunc}")
def _run_aggr_dist_test(x, y): # default parametersc default_params = AggrDist(transformer=ScipyDist()) default_params_transformation = np.around((default_params.transform(x, y)), decimals=3) assert np.array_equal( np.array([ [1.714, 1.49, 1.53, 1.699, 1.849], [1.479, 1.36, 1.358, 1.476, 1.471], [1.553, 1.476, 1.354, 1.523, 1.425], [1.641, 1.704, 1.603, 1.698, 1.37], ]), default_params_transformation, ), "Error occurred testing on default parameters, result is not correct" for transformer in PAIRWISE_TRANSFORMERS_TAB: for aggfunc in AGGFUNCS: aggfunc_params = AggrDist(transformer=transformer(), aggfunc=aggfunc) aggfunc_params_transformation = aggfunc_params.transform(x, y) assert isinstance( aggfunc_params_transformation, np.ndarray), (f"Error occurred testing on following parameters" f"transformer={transformer}, aggfunc={aggfunc}")
def _run_scipy_dist_test(x, y): # default parameters default_params = ScipyDist() default_params_transformation = np.around((default_params.transform(x, y)), decimals=3) assert np.array_equal( np.array([ [2.318, 1.657, 1.582, 1.502, 1.461], [1.79, 1.249, 1.715, 1.656, 1.449], [2.424, 2.083, 2.28, 1.735, 1.73], [1.602, 1.012, 1.658, 1.167, 0.901], [2.219, 1.643, 1.373, 1.005, 1.216], ]), default_params_transformation, ), "Error occurred testing on default parameters, result is not correct" for metric in METRIC_VALUES: for p in P_VALUES: for colalign in COLALIGN_VALUES: metric_params = ScipyDist(metric=metric, p=p, colalign=colalign) metric_params_transformation = metric_params.transform(x, y) assert isinstance(metric_params_transformation, np.ndarray), ( f"Error occurred testing on following parameters" f"metric={metric}, p={p}, colalign={colalign}")
}, HampelFilter: { "window_length": 3 }, OptionalPassthrough: { "transformer": BoxCoxTransformer(), "passthrough": False }, FeatureSelection: { "method": "all" }, ColumnwiseTransformer: { "transformer": Detrender() }, AggrDist: { "transformer": ScipyDist() }, PyODAnnotator: { "estimator": ANOMALY_DETECTOR }, ClaSPSegmentation: { "period_length": 5, "n_cps": 1 }, ClaSPTransformer: { "window_length": 5 }, } # We use estimator tags in addition to class hierarchies to further distinguish # estimators into different categories. This is useful for defining and running
}, Prophet: { "n_changepoints": 0, "yearly_seasonality": False, "weekly_seasonality": False, "daily_seasonality": False, "uncertainty_samples": 1000, "verbose": False, }, PartialAutoCorrelationTransformer: {"n_lags": 1}, AutoCorrelationTransformer: {"n_lags": 1}, Imputer: {"method": "mean"}, HampelFilter: {"window_length": 3}, OptionalPassthrough: {"transformer": BoxCoxTransformer(), "passthrough": True}, ColumnwiseTransformer: {"transformer": Detrender()}, AggrDist: {"transformer": ScipyDist()}, PyODAnnotator: {"estimator": ANOMALY_DETECTOR}, } # We use estimator tags in addition to class hierarchies to further distinguish # estimators into different categories. This is useful for defining and running # common tests for estimators with the same tags. VALID_ESTIMATOR_TAGS = tuple(ESTIMATOR_TAG_LIST) # These methods should not change the state of the estimator, that is, they should # not change fitted parameters or hyper-parameters. They are also the methods that # "apply" the fitted estimator to data and useful for checking results. NON_STATE_CHANGING_METHODS = ( "predict", "predict_proba", "decision_function",