Пример #1
0
def test_padding_fill_value_transformer():
    """Test full fill padding."""
    # load data
    X_train, y_train = load_basic_motions(split="train", return_X_y=True)

    padding_transformer = PaddingTransformer(pad_length=120, fill_value=1)
    Xt = padding_transformer.fit_transform(X_train)

    # when we tabularize the data it has 6 dimensions
    # and we've padded them all to 120 long.
    data = from_nested_to_2d_array(Xt)
    assert len(data.columns) == 120 * 6
Пример #2
0
def test_padding_fill_value_transformer():
    # load data
    name = "JapaneseVowels"
    X_train, y_train = _load_dataset(name, split="train", return_X_y=True)
    X_test, y_test = _load_dataset(name, split="test", return_X_y=True)

    # print(X_train)

    padding_transformer = PaddingTransformer(pad_length=40, fill_value=1)
    Xt = padding_transformer.fit_transform(X_train)

    # when we tabulrize the data it has 12 dimensions
    # and we've truncated them all to (10-2) long.
    data = from_nested_to_2d_array(Xt)
    assert len(data.columns) == 40 * 12
Пример #3
0
def test_padding_transformer():
    # load data
    name = "JapaneseVowels"
    X_train, y_train = _load_dataset(name, split="train", return_X_y=True)
    X_test, y_test = _load_dataset(name, split="test", return_X_y=True)

    # print(X_train)

    padding_transformer = PaddingTransformer()
    Xt = padding_transformer.fit_transform(X_train)

    # when we tabulrize the data it has 12 dimensions
    # and we've padded them to there normal length of 29
    data = from_nested_to_2d_array(Xt)
    assert len(data.columns) == 29 * 12
Пример #4
0
def test_missing_unequal_tag_inference():
    """Test that ClassifierPipeline infers missing/unequal tags correctly."""
    c = KNeighborsTimeSeriesClassifier()
    c1 = ExponentTransformer() * PaddingTransformer() * ExponentTransformer(
    ) * c
    c2 = ExponentTransformer() * ExponentTransformer() * c
    c3 = Imputer() * ExponentTransformer() * c
    c4 = ExponentTransformer() * Imputer() * c

    assert c1.get_tag("capability:unequal_length")
    assert not c2.get_tag("capability:unequal_length")
    assert c3.get_tag("capability:missing_values")
    assert not c4.get_tag("capability:missing_values")
Пример #5
0
def test_missing_unequal_tag_inference():
    """Test that TransformerPipeline infers missing/unequal tags correctly."""
    t1 = ExponentTransformer() * PaddingTransformer() * ExponentTransformer()
    t2 = ExponentTransformer() * ExponentTransformer()
    t3 = Imputer() * ExponentTransformer()
    t4 = ExponentTransformer() * Imputer()

    assert t1.get_tag("capability:unequal_length")
    assert t1.get_tag("capability:unequal_length:removes")
    assert not t2.get_tag("capability:unequal_length:removes")
    assert t3.get_tag("handles-missing-data")
    assert t3.get_tag("capability:missing_values:removes")
    assert not t4.get_tag("handles-missing-data")
    assert not t4.get_tag("capability:missing_values:removes")