def validate_video(video_filepath, ffprobe_path, video_info): """ Take video file and sanity check basic info. Args: video_filepath: Path to output video file (Type: str) ffprobe_path: Path to ffprobe executable (Type: str) video_info: Video info dictionary (Type: str) """ import skvideo import skvideo.io if not os.path.exists(video_filepath): error_msg = 'Output file {} does not exist.'.format(video_filepath) raise FfmpegValidationError(error_msg) skvideo.setFFmpegPath(os.path.dirname(ffprobe_path)) # Check to see if we can open the file try: skvideo.io.vread(video_filepath) except Exception as e: raise FfmpegUnopenableFileError(video_filepath, e) ffprobe_info = ffprobe(ffprobe_path, video_filepath) if not ffprobe_info: error_msg = 'Could not analyse {} with ffprobe' raise FfmpegValidationError(error_msg.format(video_filepath)) if ffprobe_info["format"]["nb_streams"] < 2: error_msg = '{} has no audio streams!' raise FfmpegValidationError(error_msg.format(video_filepath)) # Get the video stream data if not ffprobe_info.get('streams'): error_msg = '{} has no video streams!' raise FfmpegValidationError(error_msg.format(video_filepath)) ffprobe_info = next(stream for stream in ffprobe_info['streams'] if stream['codec_type'] == 'video') for k, v in video_info.items(): output_v = ffprobe_info[k] # Convert numeric types to float, since we may get strings from ffprobe try: v = float(v) except ValueError: pass try: output_v = float(output_v) except ValueError: pass if v != output_v: error_msg = 'Output video {} should have {} = {}, but got {}.'.format( video_filepath, k, v, output_v) raise FfmpegValidationError(error_msg)
def create(cls, hertz, filename): """ Creates a new instance of currently recording video window: the window from which the video is recording synchronized: synchronized datasources platform: dataset platform """ skvideo.setFFmpegPath('./skvideo/') #TODO: Side effect, should try catch or return Result writer = FFmpegWriter(filename, inputdict = {'-r': str(hertz)}) print(f"Creating video file {filename} in directory {os.getcwd()}...") return Video(cls.__create_key, filename, writer)
def main(): skvideo.setFFmpegPath( "D:\\Computer Vision\\Homework1\\opencv_traffic_counting\\ffmpeg-20190519-fbdb3aa-win64-static\\bin" ) log = logging.getLogger("main") base = np.zeros(SHAPE + (3, ), dtype='uint8') exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0] bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500, detectShadows=True) pipeline = ProcessPipelineRunner(pipeline=[ ContourDetection(bg_subtractor=bg_subtractor, save_image=True, image_dir=Image_dir), VehicleCounter(exit_masks=[exit_mask], y_weight=2.0), Vis(image_dir=Image_dir), write_csv(path='./', name='report.csv') ], log_level=logging.DEBUG) cap = skvideo.io.vreader(Vid_src) # skip num frames and train the background subtractor it will identify the background for all the frames bg_Subtractor_train(bg_subtractor, cap, num=1000) _frame_number = -1 frame_number = -1 for frame in cap: if not frame.any(): log.error("Frame capture failed, stopping...") break _frame_number += 1 if _frame_number % 2 != 0: continue frame_number += 1 pipeline.set_context({ 'frame': frame, 'frame_number': frame_number, }) pipeline.run()
def set_skvideo_path(ffmpeg_path=None, libav_path=None): """Sets the path to the FFMPEG and/or LibAV libraries. If scikit-video complains that either ffmpeg or libav cannot be found, you can set the path to the executables directly. On Unix, these binaries usually live in /usr/bin. On Windows, point to the directory that contains your ffmpeg.exe. Parameters ---------- ffmpeg_path : str, optional, default: system's default path Path to ffmpeg library. libav_path : str, optional, default: system's default path Path to libav library. """ if libav_path is not None: skvideo.setLibAVPath(libav_path) if ffmpeg_path is not None: skvideo.setFFmpegPath(ffmpeg_path)
@author: Mark Lundine """ import numpy as np import cv2 import PIL import sys from PIL import Image from PIL.ExifTags import TAGS Image.MAX_IMAGE_PIXELS = None import skvideo import os wd = os.getcwd() ffmpeg_path = os.path.join(wd, 'ffmpeg', 'bin') skvideo.setFFmpegPath(ffmpeg_path) import skvideo.io import glob from PIL import ImageFilter from os.path import join import datetime as dt ### Code adapated from javascript code available at https://github.com/nikolajbech/underwater-image-color-correction def getColorFilterMatrix(img_array, width, height, avg, MIN_AVG_RED, MAX_HUE_SHIFT, BLUE_MAGIC_VALUE): ### Magic values: NUM_PIXELS = width * height THRESHOLD_RATIO = 2000 THRESHOLD_LEVEL = NUM_PIXELS/THRESHOLD_RATIO ## Objects:
import skvideo import skvideo.io as skv import numpy as np from bc.settings import FFMPEG_PATH skvideo.setFFmpegPath(FFMPEG_PATH) def write_video(frames, path): skv.vwrite(path, np.array(frames).astype(np.uint8))
import argparse import torch import networks import skvideo skvideo.setFFmpegPath(r'C:\Program Files\ffmpeg\bin') import skvideo.io as io import numpy as np import matplotlib.cm as cm # Argument parser parser = argparse.ArgumentParser() parser.add_argument('-video_in', required=True, help='Path to the input video file') parser.add_argument('-video_out', required=True, help='Path to the output video file') parser.add_argument('-saved_model', required=True, help='Path to the trained model') parser.add_argument('-device', default=0, type=int, help='CUDA device') parser.add_argument('-axis', default=1, type=int, help='Axis to stack RGB image and depth prediction') args = parser.parse_args() # CUDA device device = "cuda:{}".format(args.device) if torch.cuda.is_available() else 'cpu' # Create the reader and writer
import plotly.graph_objs as go import skvideo skvideo.setFFmpegPath('/usr/bin/') from skvideo.io import FFmpegWriter, FFmpegReader import tempfile import numpy as np import time import imageio import os import warnings import cv2 import math from multiprocessing import Queue, Process import datetime import torch PYCHARM_VISDOM = 'PYCHARM_RUN' def instantiante_visdom(port, server='http://localhost'): return visdom.Visdom(port=port, server=server, use_incoming_socket=True) if not 'NO_VISDOM' in os.environ.keys():
import os,sys, posixpath import numpy as np import cv2 from PIL import Image from multiprocessing import Pool import argparse from IPython import embed #to debug import skvideo skvideo.setFFmpegPath('D:\\ffmpeg\\bin') import skvideo.io import scipy.misc def ToImg(raw_flow,bound): ''' this function scale the input pixels to 0-255 with bi-bound :param raw_flow: input raw pixel value (not in 0-255) :param bound: upper and lower bound (-bound, bound) :return: pixel value scale from 0 to 255 ''' flow=raw_flow flow[flow>bound]=bound flow[flow<-bound]=-bound flow-=-bound flow*=(255/float(2*bound)) return flow def save_flows(flows,image,save_dir,num,bound): ''' To save the optical flow images and raw images
sys.path.append(os.path.join(subfolder, "pose-tensorflow")) sys.path.append(os.path.join(subfolder, "config")) # Dependencies for video: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pandas as pd import numpy as np from tqdm import tqdm from skimage.draw import circle_perimeter, circle from VideoProcessor import VideoProcessorSK as vp from skvideo import setFFmpegPath setFFmpegPath('/n/helmod/apps/centos7/Core/ffmpeg/2.7.2-fasrc01/bin') #################################################### # Loading descriptors of model #################################################### from myconfig_analysis import videofolder, cropping, Task, date, cam_fps, \ resnet, shuffle, trainingsiterations, pcutoff, deleteindividualframes, x1, x2, y1, y2, videotype, alphavalue, dotsize, colormap from myconfig_analysis import scorer as humanscorer # loading meta data / i.e. training & test files #basefolder = os.path.join('..','pose-tensorflow','models') #datafolder = os.path.join(basefolder , "UnaugmentedDataSet_" + Task + date) #Data = pd.read_hdf(os.path.join(datafolder , 'data-' + Task , 'CollectedData_' + humanscorer + '.h5'),'df_with_missing') # Name for scorer based on passed on parameters from myconfig_analysis. Make sure they refer to the network of interest.
import matplotlib.pyplot as plt import numpy as np import scipy.misc import skvideo.datasets import skvideo skvideo.setFFmpegPath('C:/Users/Zber/Documents/ffmpeg/bin') import skvideo.io import skvideo.motion import cv2 try: xrange except NameError: xrange = range def getPlots(motionData): motionMagnitude = np.sqrt(np.sum(motionData**2, axis=2)) fig = plt.figure() plt.quiver(motionData[::-1, :, 0], motionData[::-1, :, 1]) fig.axes[0].get_xaxis().set_visible(False) fig.axes[0].get_yaxis().set_visible(False) plt.tight_layout() fig.canvas.draw() # Get the RGBA buffer from the figure
""" Created on Thu Sep 24 16:30:25 2020 @author: svc_ccg """ import numpy as np import matplotlib.pyplot as plt import cv2 from sync_dataset import Dataset as sync_dataset import probeSync import os, glob import json from numba import njit import skvideo skvideo.setFFmpegPath(r'C:\Users\svc_ccg\Documents\ffmpeg\bin') import skvideo.io annotated_video_dirs = [ r"\\10.128.50.20\sd7\habituation\1050235366_530862_20200914", r"\\10.128.50.20\sd7\habituation\1050264010_524926_20200914", r"\\10.128.50.20\sd7\habituation\1051845969_532246_20200921", r"\\10.128.50.20\sd7\habituation\1052096186_533537_20200922" ] annotation_category_dict = { 'no label': 0, 'tongue': 1, 'paw': 2, 'groom': 3, 'air lick': 4,
from imutils.video import FPS import argparse import os import imutils import cv2 from keras.applications.vgg16 import VGG16 from scipy import misc # run "pip install pillow" from imutils import face_utils import dlib import skvideo import glob import numpy as np from keras.models import load_model from sklearn.metrics import confusion_matrix, classification_report import pandas skvideo.setFFmpegPath("C:\\ffmpeg\\bin") predictor_path = 'C:/Users/gayat/Downloads/shape_predictor_68_face_landmarks.dat\shape_predictor_68_face_landmarks.dat' detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) RECTANGLE_LENGTH = 90 # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-n", "--num-frames", type=int, default=20, help="# of frames to loop over for FPS test") ap.add_argument("-d", "--display", type=int, default=-1, help="Whether or not frames should be displayed") args = vars(ap.parse_args())
import os from torch.utils.data import Dataset import librosa import scipy.io.wavfile as scp import torch import math import pickle from utils.NoiseInjection import * import skvideo skvideo.setFFmpegPath('C:/FFmpeg/bin/') import skvideo.io import torchvision.transforms import re #Audio ground truth AudioGt = {} AudioGt["Speaker1"] = np.array( [[1.7, 2.7], [5, 6.9], [10.3, 14.1], [18.3, 20.0], [23.5, 25.2], [30.4, 32.6], [38.3, 41], [46.2, 50.1], [55.2, 57.3], [63.7, 65.2], [68.3, 69.2], [72.6, 74.7], [78.2, 81.4], [86, 87.5], [91.1, 93], [96.8, 99], [102.6, 103.6], [106.5, 108.3], [112.4, 115.9], [118.9, 119.9]], dtype=np.float32) AudioGt["Speaker2"] = np.array( [[1.4, 2.4], [2.9, 5.5], [9.5, 11.4], [11.7, 13.4], [18.2, 24.6], [28, 28.8], [32, 35.7], [39.7, 44.9], [49.3, 50.3], [55.3, 57.1], [60.6, 65.2], [69.3, 72.8], [77.6, 84], [87.5, 88.8], [94, 99.4], [104.1, 107.7], [112.8, 116]], dtype=np.float32) AudioGt["Speaker3"] = np.array( [[1.7, 7.2], [9.9, 19.7], [25.1, 29], [32.3, 39.5], [44.1, 48.2],
import os, sys import numpy as np from multiprocessing import Pool from PIL import Image import skvideo skvideo.setFFmpegPath(r'C:\ffmpeg-4.2-win64-shared\bin') import skvideo.io root_dir = r'E:\talking_heads\data\voxceleb2\vox2_dev_mp4' output_dir = r'E:\talking_heads\data\voxceleb2\vox2_dev_frames' k = 6 sample_count = 20 def initialize(): global pid pid = os.getpid() def main_routine(input_var): i, pv_id = input_var video_root = os.path.join(root_dir, pv_id) output_root = os.path.join(output_dir, pv_id) videos = os.listdir(video_root) print('%d: %d %s %d' % (pid, i, video_root, len(videos))) # extract for video in videos:
import tensorflow as tf videoPath = "C:\\Vomit\\Vomit7.mp4" from keras.models import load_model model = load_model('C:\\Vomit\\my_model.h5') model.summary() #test = np.zeros(1024,) test = [] #test = np.expand_dims(test,axis = 0) #predict = model.predict(test) #predict[0] testFrames = [] #testFrames.shape skvideo.setFFmpegPath(r'C:\\Vomit\\ffmpeg-4.2.2-win64-static\\bin') import skvideo.io #testFrames = skvideo.io.vread(videoPath, height = 224, width = 224) testFrames = skvideo.io.vread(videoPath, outputdict={"-pix_fmt": "gray"})[:, 224, 224, 0] i = 0 fileJson = {} fileJson["Vomit7.mp4"] = [] print(testFrames.shape) while (i < testFrames.shape[0]): #test = testFrames[i:i+5,:,:,:] test = testFrames[i, :, :] print(test.shape)
import cv2 print(cv2.__version__) import numpy as np import h5py import matplotlib matplotlib.use('PS') import matplotlib.pyplot as plt from PIL import Image from tqdm import tqdm import skvideo skvideo.setFFmpegPath('../../usr/bin') import skvideo.io from matplotlib.pyplot import imshow import os def array_to_vid(a, output_directory, output_name): skvideo.io.vwrite(output_directory+'/'+output_name+".mp4", a) def frstack_to_subdir(frame, subdir_name, output_dir): subdirectory = output_dir + '/' + subdir_name + '/' os.makedirs(subdirectory) frame0 = frame[0,:,:,:] frame2 = frame[1,:,:,:] frame1 = frame[2,:,:,:] Image.fromarray(frame0).save(subdirectory+'frame0.png') Image.fromarray(frame1).save(subdirectory+'frame1.png') Image.fromarray(frame2).save(subdirectory+'frame2.png')
# -*- coding: utf-8 -*- """ Created on Thu Sep 24 17:42:10 2020 @author: svc_ccg """ from __future__ import division import fileIO import skvideo skvideo.setFFmpegPath('C:\\Users\\svc_ccg\\Desktop\\ffmpeg\\bin') import skvideo.io savePath = fileIO.saveFile('Save movie as', fileType='*.mp4') inputParams = {'-r': '30'} outputParams = { '-r': '30', '-pxl_fmt': 'yuv420p', '-vcodec': 'libx264', '-crf': '23', '-preset': 'slow' } # '-pix_fmt': 'yuv420p' important to avoid green screen on mac; number of pixels needs to be even v = skvideo.io.FFmpegWriter(savePath, inputdict=inputParams, outputdict=outputParams)
import skvideo import glob import os import numpy as np from moviepy.editor import ImageClip, concatenate_videoclips, VideoFileClip import pandas as pd import cv2 skvideo.setFFmpegPath(r'C:\Users\Chris\Documents\projects\cs172b\ffmpeg-4.2.2-win64-shared\bin') import skvideo.io def convert_data(data_path): videos = glob.glob(data_path) size = 224 for v in videos: # if '13_4m_r' not in v: # continue # print (v) file_path = '.'.join(v.split('.')[:-2]) videodata = skvideo.io.vread(v) cam = cv2.VideoCapture(v) fps = cam.get(cv2.CAP_PROP_FPS) framelength=videodata.shape[0] try: df=pd.read_csv(file_path+'.csv', delimiter=',') except: print('Failed to find csv for',os.path.basename(v)) threshold = df.max()['ECG']*0.6
# TO DO: # (1) report potential # missed frames (maybe use counter to count Line 1 edges and write to video file) # (2) try using ImageEvent instead of blocking GetNextImage(timeout) call # (3) explicitly setup camera onboard buffer # (4) use multiprocess or other package to implement better parallel processing # (5) try FFMPEG GPU acceleration: https://developer.nvidia.com/ffmpeg # ============================================================================= import PySpin, time, os, threading, queue from datetime import datetime import tkinter as tk from PIL import Image, ImageTk import numpy as np import skvideo skvideo.setFFmpegPath('C:/Anaconda3/Lib/site-packages/ffmpeg' ) #set path to ffmpeg installation before importing io import skvideo.io #constants SAVE_FOLDER_ROOT = 'C:/video' FILENAME_ROOT = 'mj_' # optional identifier EXPOSURE_TIME = 500 #in microseconds WAIT_TIME = 0.0001 #in seconds - this limits polling time and should be less than the frame rate period GAIN_VALUE = 0 #in dB, 0-40; GAMMA_VALUE = 0.4 #0.25-1 IMAGE_HEIGHT = 400 #540 pixels default; this should be divisible by 16 for H264 compressed encoding IMAGE_WIDTH = 400 #720 pixels default; this should be divisible by 16 for H264 compressed encoding HEIGHT_OFFSET = 72 #round((540-IMAGE_HEIGHT)/2) # Y, to keep in middle of sensor; must be divisible by 4 WIDTH_OFFSET = 160 # round((720-IMAGE_WIDTH)/2) # X, to keep in middle of sensor; must be divisible by 4 FRAMES_PER_SECOND = 250 #this is determined by triggers sent from behavior controller FRAMES_TO_RECORD = 600 * FRAMES_PER_SECOND #frame rate * num seconds to record; this should match # expected exposure triggers from DAQ counter output
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jan 20 18:40:20 2019 @author: secret_wang """ import os import cv2 import time import torch import numpy as np import skvideo skvideo.setFFmpegPath("C:/Program Files/ffmpeg/bin") import skvideo.io from tqdm import tqdm from torch.utils.data import Dataset, DataLoader def find_idx(idx, len_sep): start, end = 0, len(len_sep) - 1 while start <= end: mid = start + (end - start) // 2 if len_sep[mid] < idx: start = mid + 1 elif len_sep[mid] > idx: end = mid - 1 else: out1, out2 = mid, idx - len_sep[mid] if out2 < 0: out1 = out1 - 1
import skvideo.io import numpy as np import cv2 import skvideo skvideo.setFFmpegPath(r'D:\Program\ffmpeg-N-101375-g82131293b0-win64-gpl\bin') def video_info_parsing(video_info, num_person_in=5, num_person_out=2): data_numpy = np.zeros((3, len(video_info['data']), 18, num_person_in)) for frame_info in video_info['data']: frame_index = frame_info['frame_index'] for m, skeleton_info in enumerate(frame_info["skeleton"]): if m >= num_person_in: break pose = skeleton_info['pose'] score = skeleton_info['score'] data_numpy[0, frame_index, :, m] = pose[0::2] data_numpy[1, frame_index, :, m] = pose[1::2] data_numpy[2, frame_index, :, m] = score # centralization data_numpy[0:2] = data_numpy[0:2] - 0.5 data_numpy[0][data_numpy[2] == 0] = 0 data_numpy[1][data_numpy[2] == 0] = 0 sort_index = (-data_numpy[2, :, :, :].sum(axis=1)).argsort(axis=1) for t, s in enumerate(sort_index): data_numpy[:, t, :, :] = data_numpy[:, t, :, s].transpose((1, 2, 0)) data_numpy = data_numpy[:, :, :, :num_person_out]
def validate_video(video_filepath, ffprobe_path, video_info, end_past_video_end=False): """ Take video file and sanity check basic info. Args: video_filepath: Path to output video file (Type: str) ffprobe_path: Path to ffprobe executable (Type: str) video_info: Video info dictionary (Type: str) """ import skvideo import skvideo.io if not os.path.exists(video_filepath): error_msg = 'Output file {} does not exist.'.format(video_filepath) raise FfmpegValidationError(error_msg) skvideo.setFFmpegPath(os.path.dirname(ffprobe_path)) # Check to see if we can open the file try: skvideo.io.vread(video_filepath) except Exception as e: raise FfmpegUnopenableFileError(video_filepath, e) ffprobe_info = ffprobe(ffprobe_path, video_filepath) if not ffprobe_info: error_msg = 'Could not analyse {} with ffprobe' raise FfmpegValidationError(error_msg.format(video_filepath)) # Get the video stream data if not ffprobe_info.get('streams'): error_msg = '{} has no video streams!' raise FfmpegValidationError(error_msg.format(video_filepath)) ffprobe_info = next(stream for stream in ffprobe_info['streams'] if stream['codec_type'] == 'video') # If duration specifically doesn't match, catch that separately so we can # retry with a different duration target_duration = video_info['duration'] try: actual_fr_ratio = ffprobe_info.get('r_frame_rate', ffprobe_info['avg_frame_rate']) fr_num, fr_den = actual_fr_ratio.split('/') actual_framerate = float(fr_num) / float(fr_den) except KeyError: error_msg = 'Could not get frame rate from {}' raise FfmpegValidationError(error_msg.format(video_filepath)) actual_duration = float(ffprobe_info['nb_frames']) / actual_framerate if target_duration != actual_duration: if not (end_past_video_end) and actual_duration < target_duration: raise FfmpegIncorrectDurationError(video_filepath, target_duration, actual_duration) for k, v in video_info.items(): if k == 'duration' and (end_past_video_end and actual_duration < target_duration): continue output_v = ffprobe_info[k] # Convert numeric types to float, since we may get strings from ffprobe try: v = float(v) except ValueError: pass try: output_v = float(output_v) except ValueError: pass if v != output_v: error_msg = 'Output video {} should have {} = {}, but got {}.'.format( video_filepath, k, v, output_v) raise FfmpegValidationError(error_msg)
help='场景识别阈值') parser.add_argument('--rescene', dest='rescene', type=str, default="mix", help="copy/mix 帧复制/帧混合") parser.add_argument('--exp', dest='exp', type=int, default=1, help='补2的exp次方-1帧') args = parser.parse_args() assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0] spent = time.time() skvideo.setFFmpegPath(args.ffmpeg) if not os.path.exists(args.output): os.mkdir(args.output) if args.device_id != -1: device = torch.device("cuda") torch.cuda.set_device(args.device_id) torch.set_grad_enabled(False) torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True if args.fp16: torch.set_default_tensor_type(torch.cuda.HalfTensor) try: from model.RIFE_HDv2 import Model model = Model()
import os import sys import time import numpy as np import cv2 import skvideo skvideo.setFFmpegPath(os.path.dirname(sys.executable)) import skvideo.io from face_detector_YOLOv2 import YoloFace from face_tracker_DLib import DLibFaceTracker from itertools import count ''' Allows this file to be inported from anywhere, updated the model location to be generalizable ''' file_path = os.path.realpath(__file__) model_path = '/YOLO_face_detection/darknet_face_release' end_ind = file_path.rfind( 'detection_tracking' ) #file_path.find(substring, string.find(substring) + 1) end_ind = file_path[0:end_ind].rfind('detection_tracking') #print(file_path) #print("FINAL PATH") #print(file_path[0:end_ind] + model_path) #print("#########################################") yolo_model = YoloFace(file_path[0:end_ind] + model_path) #print() #yolo_model = YoloFace('../YOLO_face_detection/darknet_face_release')
import pickle from attrdict import AttrDict #from cnn.model_cnn import TrajEstimator #from cnn.model_cnn_moving_threshold import TrajEstimatorThreshold from vgg_analysis.model import TrajectoryGenerator #as TrajectoryGenerator_sgan from model_sgan_tokka import TrajectoryGenerator_sgan from semantic_embedding.model import TrajectoryGenerator_sem from vgg_analysis.model_rnn import TrajectoryGenerator_R from vgg_analysis.old_model_segnet_camvid.model_segnet import TrajectoryGenerator_seg_camvid from vgg_analysis.model_segnet import TrajectoryGenerator_seg #full segnet from vgg_analysis.model_gt import TrajectoryGenerator_gt from utils import relative_to_abs import torch import skvideo skvideo.setFFmpegPath('C:/Users/arsal/Anaconda3/pkgs/ffmpeg-2.7.0-0/Scripts') import skvideo.io import cv2 #"C:\Users\arsal\PycharmProjects\SGAN-AE-master\SGAN-AE-master\scene\full-psp\out-hotel" """RNN-AE-PSP""" with(open("C://Users//arsal//PycharmProjects//SGAN-AE-master//SGAN-AE-master//scene//full-psp//out-eth", 'rb')) as open_file: dat_seg =torch.Tensor(pickle.load(open_file)) """VGG-16""" path_traj_vid = "D:/traj_vid" dat= cv2.imread(path_traj_vid+"/eth/frame0.jpg") dat=cv2.resize(dat,(224,224)) dat=torch.tensor(dat) """SEG-Net-full""" #with (open("C:/Users/arsal/PycharmProjects/SGAN-AE-master/SGAN-AE-master/trained_models/Tokka/SegNet-AE-Scene/hotel/hotel.pkl",'rb+')) as ff: (Segnet-camvid)
import os import skvideo skvideo.setFFmpegPath("/home/ercong.cc/software/ffmpeg/bin") import skvideo.io import os.path import random import cv2 import numpy as np def get_class_Ind(): path = os.listdir('hmdb51') path.sort() return path def get_train_list(path, split='_test_split1'): train_list = open('train_list1.txt', 'w+') test_list = open('test_list1.txt', 'w+') for i in range(len(path)): file_name = path[i] + split file_name = 'test_train_splits/' + file_name + '.txt' with open(file_name) as file: path_list = [row.strip() for row in list(file)] file_path_list = [row.split(' ')[0] for row in path_list] file_label_list = [row.split(' ')[1] for row in path_list] for j in range(len(file_path_list)): if file_label_list[j] == '1': string_name = path[i] + '/' + file_path_list[ j] + ' ' + str(i)
import numpy as np import pandas as pd import pickle import pylab as plt from matplotlib import pyplot as plt from datetime import datetime from collections import OrderedDict import skvideo import skvideo.io import copy skvideo.setFFmpegPath("/usr/local/bin") # Local import from algorithms.mcts import MCTS, CalculateScore, GetActionPrior, SelectNextAction, SelectChild, Expand, RollOut, backup, \ InitializeChildren, HeuristicDistanceToTarget import envMujoco as env import reward from envSheepChaseWolf import stationaryWolfPolicy, WolfPolicyForceDirectlyTowardsSheep, DistanceBetweenActualAndOptimalNextPosition, \ GetAgentPosFromTrajectory, GetAgentPos, GetAgentActionFromTrajectoryDf from envMujoco import Reset, TransitionFunction, IsTerminal from play import SampleTrajectory def drawHistogram(dataDf, axForDraw): # Line print('dataDf', dataDf) countDf = dataDf['action'].value_counts() countDf.plot.bar(ax=axForDraw, rot='horizontal') class RunTrial:
import numpy as np import pandas as pd from tqdm import tqdm import os import cv2 import local_processing.analysis_util.analysis_util as au from skimage.draw import circle, line, bezier_curve import skvideo skvideo.setFFmpegPath('C:/Program Files/ffmpeg/bin/') from local_processing.video_maker.video_processor import VideoProcessorSK as vp import matplotlib.pyplot as plt base_folder = 'Z:/Data/BarthAirPuff/' task = 'air-puff' date = 'Dec7' shuffle = 1 train_fraction = 0.95 snapshot_index = 0 video_name = '9 psi.MOV' pcutoff = 0.3 dotsize = 4 resnet = 50 snapshot = 600000 # for ts plotting pick_bodypart = 'tip11' def_color = [255, 0, 0] def create_video(clip, data_frame):
import os from torch.utils.data import Dataset import librosa import scipy.io.wavfile as scp import torch import math import pickle from utils.NoiseInjection import * import skvideo skvideo.setFFmpegPath('C:/Deep/Tools/ffmpeg/bin/') import skvideo.io import torchvision.transforms import re #Audio ground truth AudioGt = {} AudioGt["Speaker1"] = np.array( [[1.7, 2.7], [5, 6.9], [10.3, 14.1], [18.3, 20.0], [23.5, 25.2], [30.4, 32.6], [38.3, 41], [46.2, 50.1], [55.2, 57.3], [63.7, 65.2], [68.3, 69.2], [72.6, 74.7], [78.2, 81.4], [86, 87.5], [91.1, 93], [96.8, 99], [102.6, 103.6], [106.5, 108.3], [112.4, 115.9], [118.9, 119.9]], dtype=np.float32) AudioGt["Speaker2"] = np.array( [[1.4, 2.4], [2.9, 5.5], [9.5, 11.4], [11.7, 13.4], [18.2, 24.6], [28, 28.8], [32, 35.7], [39.7, 44.9], [49.3, 50.3], [55.3, 57.1], [60.6, 65.2], [69.3, 72.8], [77.6, 84], [87.5, 88.8], [94, 99.4], [104.1, 107.7], [112.8, 116]], dtype=np.float32) AudioGt["Speaker3"] = np.array( [[1.7, 7.2], [9.9, 19.7], [25.1, 29], [32.3, 39.5], [44.1, 48.2],