Пример #1
0
    def _at(self, time):
        """Propagate the KeplerOrbit to the given Time object

        The Time object can contain one time, or an array of times
        """
        pos, vel = propagate(
            self.position_at_epoch.au,
            self.velocity_at_epoch.au_per_d,
            self.epoch.tt,
            time.tt,
            self.mu_au3_d2,
        )
        if self._rotation is not None:
            pos = mxv(self._rotation, pos)
            vel = mxv(self._rotation, vel)
        return pos, vel, None, None
Пример #2
0
def test_velocity_in_ITRF_to_GCRS2():
    # TODO: Get test working with these vectors too, showing it works
    # with a non-zero velocity vector, but in that case the test will
    # have to be fancier in how it corrects.
    # r = np.array([(1, 0, 0), (1, 1 / DAY_S, 0)]).T
    # v = np.array([(0, 1, 0), (0, 1, 0)]).T

    ts = api.load.timescale()
    t = ts.utc(2020, 7, 17, 8, 51, [0, 1])
    r = np.array([(1, 0, 0), (1, 0, 0)]).T
    v = np.array([(0, 0, 0), (0, 0, 0)]).T

    r, v = ITRF_to_GCRS2(t, r, v, True)

    # Rotate back to equinox-of-date before applying correction.
    r = mxv(t.M, r)
    v = mxv(t.M, v)

    r0, r1 = r.T
    v0 = v[:,0]

    # Apply a correction: the instantaneous velocity does not in fact
    # carry the position in a straight line, but in an arc around the
    # origin; so use trigonometry to move the destination point to where
    # linear motion would have carried it.
    angvel = (t.gast[1] - t.gast[0]) / 24.0 * tau
    r1 = mxv(rot_z(np.arctan(angvel) - angvel), r1)
    r1 *= np.sqrt(1 + angvel*angvel)

    actual_motion = r1 - r0
    predicted_motion = v0 / DAY_S

    relative_error = (length_of(actual_motion - predicted_motion)
                      / length_of(actual_motion))

    acceptable_error = 4e-12
    assert relative_error < acceptable_error