netParams = snn.params('network.yaml') # Define the cuda device to run the code on. device = torch.device('cuda') # deviceIds = [2, 3] # Create network instance. net = Network(netParams).to(device) # net = torch.nn.DataParallel(Network(netParams).to(device), device_ids=deviceIds) # Create snn loss instance. error = snn.loss(netParams, spikeLayer).to(device) # Define optimizer module. # optimizer = torch.optim.Adam(net.parameters(), lr = 0.01, amsgrad = True) optimizer = optimizer.Nadam(net.parameters(), lr=0.01, amsgrad=True) # Dataset and dataLoader instances. trainingSet = IBMGestureDataset( datasetPath=netParams['training']['path']['in'], sampleFile=netParams['training']['path']['train'], samplingTime=netParams['simulation']['Ts'], sampleLength=netParams['simulation']['tSample']) trainLoader = DataLoader(dataset=trainingSet, batch_size=4, shuffle=True, num_workers=1) testingSet = IBMGestureDataset( datasetPath=netParams['training']['path']['in'], sampleFile=netParams['training']['path']['test'],
netParams = snn.params('network.yaml') # Define the cuda device to run the code on. device = torch.device('cuda') # deviceIds = [1, 2] # Create network instance. net = Network(netParams, 'emg', 'dvsCropped').to(device) # net = torch.nn.DataParallel(Network(netParams).to(device), device_ids=deviceIds) # Create snn loss instance. error = snn.loss(netParams, snn.loihi).to(device) # Define optimizer module. optimizer = optim.Nadam(net.parameters(), lr=0.01) # Dataset and dataLoader instances. trainingSet = fusionDataset( samples=np.loadtxt('train.txt').astype(int), samplingTime=netParams['simulation']['Ts'], sampleLength=netParams['simulation']['tSample'], # sampleLength=2000, ) testingSet = fusionDataset( samples=np.loadtxt('test.txt').astype(int), samplingTime=netParams['simulation']['Ts'], sampleLength=netParams['simulation']['tSample'], )