subdir_list = [] for der in der_names: temp_name = subdir_name + "/" + der subdir_list.append(temp_name) init_kwargs = { "input_directory": input_dir, "save_directory": save_dir, "subdir_name": subdir_name, "func": (prep, "read_file_to_df"), "search_suffix": ".csv", "readfile": True, "index_col": [0, 1, 2], "header": [0] } delta_create_object = prep.SaveObjectPipeline(**init_kwargs) delta_process_kwargs = { "function": (prep, "create_df_for_single_band"), "savecsv": False, "name_of_band": ["Delta"], "range_to_sum": ("0.50Hz", "4.00Hz") } delta_create_object.process_file(**delta_process_kwargs) for der_no, subdir in enumerate(subdir_list): init_kwargs["subdir_name"] = subdir cumsum_plot_object = prep.SaveObjectPipeline(**init_kwargs) process_kwargs = { "function": (prep, "create_stage_df"), "savecsv": False,
input_dir = pathlib.Path("/Users/angusfisk/Documents/01_PhD_files/01_projects" "/P3_LLEEG_Chapter3/01_data_files/07_clean_fft_files") save_dir = input_dir.parents[1] / "03_analysis_outputs" subdir_name = "01_delta_hypnograms" init_kwargs = { "input_directory": input_dir, "save_directory": save_dir, "subdir_name": subdir_name, "func": (prep, "read_file_to_df"), "search_suffix": ".csv", "readfile": True, "index_col": [0, 1, 2], "header": [0] } hypnogram_object = prep.SaveObjectPipeline(**init_kwargs) process_kwargs = {"function": (prep, "_sep_by_top_index"), "savecsv": False} hypnogram_object.process_file(**process_kwargs) plot_kwargs = { "function": (plot, "plot_hypnogram_from_list"), "remove_col": False, "data_list": hypnogram_object.processed_list, "showfig": False, "savefig": True, "figsize": (10, 10), "name_of_band": ["Delta"], "range_to_sum": ("0.50Hz", "4.00Hz"), "level_of_index": 0, "label_col": -1,
save_dir = input_dir.parents[1] subdir_name = "01_data_files/08_stage_csv" plot_subdir_name = "03_analysis_outputs/02_cumulative_plots/01_cumulative_sleep" plot_subdir_path = prep.create_subdir(save_dir, plot_subdir_name) init_kwargs = { "input_directory": input_dir, "save_directory": save_dir, "subdir_name": subdir_name, "func": (prep, "read_file_to_df"), "search_suffix": ".csv", "readfile": True, "index_col": [0, 1, 2], "header": [0] } cumulative_sleep_object = prep.SaveObjectPipeline(**init_kwargs) process_kwargs = { "function": (prep, "create_stage_df"), "savecsv": True, } cumulative_sleep_object.process_file(**process_kwargs) plot_kwargs = { "function": (plot, "plot_cumulative_from_stage_df"), "data_list": cumulative_sleep_object.processed_list, "remove_col": False, "subdir_path": plot_subdir_path, "stages": ["NR", "R", "NR1", "R1"], "base_freq": "4S", "target_freq": "1H",
import pathlib import sys sys.path.insert(0, "/Users/angusfisk/Documents/01_PhD_files/07_python_package/" "sleepPy") import sleepPy.preprocessing as prep input_dir = pathlib.Path("/Users/angusfisk/Documents/01_PhD_files/" "01_projects/P3_LLEEG_Chapter3/01_data_files/" "06_fft_files") save_dir = input_dir.parent subdir_name = "07_clean_fft_files" clean_object = prep.SaveObjectPipeline(input_directory=input_dir, save_directory=save_dir, search_suffix=".txt", readfile=False, subdir_name=subdir_name) animal_file_list = prep.create_dict_of_animal_lists(clean_object.file_list, input_dir, anim_range=(0,3)) kwargs = { "save_suffix_file": "_clean.csv", "savecsv": True, "function": (prep, "single_df_for_animal"), "object_list": animal_file_list.values(), "file_list": animal_file_list.keys(), "header": 17, "derivation_list": ["fro", "occ", "foc"],
for stage in stage_list: for der in der_names: temp_name = subdir_name + "/" + stage + "/" + der subdir_list.append(temp_name) init_kwargs = { "input_directory": input_dir, "save_directory": save_dir, "subdir_name": subdir_name, "func": (prep, "read_file_to_df"), "search_suffix": ".csv", "readfile": True, "index_col": [0, 1, 2], "header": [0] } spectrum_object = prep.SaveObjectPipeline(**init_kwargs) process_kwargs = { "function": (prep, "_get_spectrum_between_times"), "savecsv": False, "stage": ["W"], "stage_col": "Stage", "time_start": "12:00:00", "time_end": "00:00:00", } spectrum_object.process_file(**process_kwargs) spectrum_list = prep._get_spectrum_between_times(df, **kwargs) spectrum_df = spectrum_list[0]