Пример #1
0
def test_AttributeGrammar_syn():
  g = Grammar(
    Production('S', 'S', '+', 'S'),
    Production('S', 'zero'),
    Production('S', 'digit')
  )
  attr_g = AttributeGrammar(
    g,
    syn_attrs={'res'},
    prod_attr_rules=[
      {'res.0': lambda res: res(1) + res(3)},
      {'res.0': lambda: 0},
      {'res.0': lambda res: res(1)}
    ],
    terminal_attr_rules={
      'digit': {'res.0': lambda word: int(word)}
    }
  )
  assert_equal(attr_g.attrs, {'res'})
  assert_equal(attr_g.syn_attrs, {'res'})
  assert_equal(attr_g.inh_attrs, set())
  assert_equal(attr_g.get_terminal_syn_attr_eval('digit', '6'), {'res': 6})
  assert_equal(attr_g.get_terminal_syn_attr_eval('zero', '0'), {})
  assert_equal(attr_g.eval_prod_syn_attr(g.prods[0], {}, [{'res': 4}, {}, {'res': 7}]), {'res': 4 + 7})
  assert_equal(attr_g.eval_prod_syn_attr(g.prods[2], {}, [{'res': 8}]), {'res': 8})
  assert_equal(attr_g.eval_prod_syn_attr(g.prods[1], {}, [{}]), {'res': 0})
Пример #2
0
def test_ParserGenerator_simple_ast():
  class Ast:
    def __init__(self, pos: TreePosition):
      self.pos = pos

  class ConstantAst(Ast):
    def __init__(self, pos, num):
      super().__init__(pos)
      self.num = num

  class SumAst(Ast):
    def __init__(self, pos, ast, num):
      super().__init__(pos)
      self.ast = ast
      self.num = num

  g = Grammar(
    Production('A', 'B'),
    Production('B', 'num'),
    Production('B', 'B', '+', 'num')
  )
  attr_g = AttributeGrammar(
    g,
    inh_attrs=set(),
    syn_attrs={'ast', 'num'},
    prod_attr_rules=[
      {'ast': 'ast.1'},
      {'ast': lambda _pos, num: ConstantAst(_pos, num(1))},
      {'ast': lambda _pos, ast, num: SumAst(_pos, ast(1), num(3))}
    ],
    terminal_attr_rules={
      'num': {'num': lambda val: int(val)}
    }
  )
  assert_equal(set(g.terminals), {'num', '+'})
  assert_equal(attr_g.attrs, {'ast', 'num'})
  assert_equal(attr_g.syn_attrs, {'ast', 'num'})
  assert_equal(attr_g.inh_attrs, set())

  word = '1+2+3'
  tokens = ['num', '+', 'num', '+', 'num']
  tokens_pos = [0, 1, 2, 3, 4]
  print('tokens:', tokens, 'with decomposition', tokens_pos)
  parser = ParserGenerator(g)
  right_analysis, attr_eval = parser.parse_syn_attr_analysis(attr_g, word, tokens, tokens_pos)
  print('right analysis:', right_analysis)
  print('attribute eval:', attr_eval)
  assert 'ast' in attr_eval
  ast3 = attr_eval['ast']
  assert isinstance(ast3, SumAst)
  assert ast3.pos == TreePosition(word, 0, 5)
  assert ast3.num == 3
  ast2 = ast3.ast
  assert isinstance(ast2, SumAst)
  assert ast2.pos == TreePosition(word, 0, 3)
  assert ast2.num == 2
  ast1 = ast2.ast
  assert isinstance(ast1, ConstantAst)
  assert ast1.pos == TreePosition(word, 0, 1)
  assert ast1.num == 1
Пример #3
0
def test_Grammar():
  g = Grammar(
    Production('S2', 'S'),
    Production('S', 'A', 'b'),
    Production('A', 'a', 'a')
  )
  assert_equal(set(g.symbols), {'S2', 'S', 'A', 'a', 'b'})
  assert_equal(set(g.terminals), {'a', 'b'})
  assert_equal(set(g.non_terminals), {'S2', 'S', 'A'})
  assert_equal(set(g.get_prods_for('S')), {g.prods[1]})
Пример #4
0
def test_ParserGenerator_simple_lookahead():
  g = Grammar(
    Production('S2', 'S'),
    Production('S', 'b', 'b'),
    Production('S', 'a', 'b')
  )
  parser = ParserGenerator(g)
  assert_equal(parser.parse_analysis('bb', ['b', 'b'], [0, 1]), (g.prods[0], g.prods[1]))
  assert_equal(parser.parse_analysis('ab', ['a', 'b'], [0, 1]), (g.prods[0], g.prods[2]))
  with assert_raises(ParseError):
    parser.parse_analysis('ba', ['b', 'a'], [0, 1])
Пример #5
0
def test_ParserGenerator_simple_left_recursive_epsilon():
  g = Grammar(
    Production('S2', 'S'),
    Production('S', 'S', 'a'),
    Production('S')
  )
  parser = ParserGenerator(g)
  for count in [0, 1, 2, 3, 20, 100, 10000]:
    assert_equal(
      parser.parse_analysis(
        'a' * count, ['a'] * count, list(range(count))), (g.prods[0],) + count * (g.prods[1],) + (g.prods[2],))
Пример #6
0
def test_ParserGenerator_simple_left_recursive():
  g = Grammar(
    Production('S2', 'S'),
    Production('S', 'S', 'a'),
    Production('S', 'a')
  )
  parser = ParserGenerator(g)
  for count in [1, 2, 3, 20, 100, 10000]:
    assert_equal(
      parser.parse_analysis(
        'a' * count, ['a'] * count, list(range(count))), (g.prods[0],) + (count-1) * (g.prods[1],) + (g.prods[2],))
  with assert_raises(ParseError):
    parser.parse_analysis('', [], [])
Пример #7
0
def test_ParserGenerator_arithmetic():
  # left associative, with operator precedence
  op_plus = Production('Sum', 'Sum', '+', 'Prod')
  op_minus = Production('Sum', 'Sum', '-', 'Prod')
  op_mult = Production('Prod', 'Prod', '*', 'Term')
  op_div = Production('Prod', 'Prod', '/', 'Term')
  const_terms = {Production('Term', str(i)): i for i in range(11)}  # we can clean this up once we have proper tokens
  g = Grammar(*[
    Production('Expr', 'Sum'),
    op_plus, op_minus,
    Production('Sum', 'Prod'),
    op_mult, op_div,
    Production('Prod', 'Term'),
    Production('Term', '(', 'Sum', ')')]
    + list(const_terms.keys())
  )
  parser = ParserGenerator(g)

  def evaluate(word: str):
    assert isinstance(word, str)
    tokens = list(word)
    tokens_pos = list(range(len(tokens)))
    print('input word:', word)
    analysis = parser.parse_analysis(word, tokens, tokens_pos)
    print('analysis:', analysis)

    stack = []
    for prod in reversed(analysis):
      if prod in const_terms:
        stack.append(const_terms[prod])
      elif prod == op_plus:
        b, a = stack.pop(-1), stack.pop(-1)
        stack.append(a + b)
      elif prod == op_minus:
        b, a = stack.pop(-1), stack.pop(-1)
        stack.append(a - b)
      elif prod == op_mult:
        b, a = stack.pop(-1), stack.pop(-1)
        stack.append(a * b)
      elif prod == op_div:
        b, a = stack.pop(-1), stack.pop(-1)
        stack.append(a / b)
    assert len(stack) == 1
    result_value = stack[0]
    print('result:', result_value)
    assert result_value == eval(word)

  evaluate('1*2+3')
  evaluate('1+2*3')
  evaluate('(1+2)*3')
  evaluate('1+2+3')
  evaluate('1+2-3')
  evaluate('1-2+3')
  evaluate('3-2-1')
  evaluate('1*2+3*4')
  evaluate('4/2-1')
Пример #8
0
def test_ParserGenerator_parse_tree_epsilon2():
  g = Grammar(
    Production('TopLevelExpr', 'ExprList'),
    Production('ExprList'),
    Production('ExprList', 'Expr', 'ExprList'),
    Production('Expr', 'Val', ';'),
    Production('Val', 'number')
  )
  parser = ParserGenerator(g)
  word = '42;'
  tokens = ['number', ';']
  tokens_pos = [0, 2]
  print(parser.parse_analysis(word, tokens, tokens_pos))
  print(parser.parse_tree(word, tokens, tokens_pos))
Пример #9
0
def test_make_first1_sets_epsilon():
  g = Grammar(
    Production('S', 'A', 'B'),
    Production('A', 'a'),
    Production('A'),
    Production('B', 'A'),
    Production('B', 'b', 'c')
  )
  first1 = make_first1_sets(g)
  print('first1 sets:', first1)
  assert_equal(first1['A'], {EPSILON, 'a'})
  assert_equal(first1['B'], {EPSILON, 'a', 'b'})
  assert_equal(first1['S'], {EPSILON, 'a', 'b'})
  assert_equal(get_first1_set_for_word(first1, ('B', 'c')), {'a', 'b', 'c'})
Пример #10
0
def test_ParserGenerator_attr_syn():
  g = Grammar(
      Production('A', 'S'),
      Production('S', 'T', '+', 'S'),
      Production('S', 'T'),
      Production('T', 'zero'),
      Production('T', 'digit')
  )
  attr_g = AttributeGrammar(
    g,
    inh_attrs=set(),
    syn_attrs={'res'},
    prod_attr_rules=[
      {'res.0': lambda res: res(1)},
      {'res.0': lambda res: res(1) + res(3)},
      {'res.0': lambda res: res(1)},
      {'res.0': lambda res: 0},
      {'res.0': lambda res: res(1)}
    ],
    terminal_attr_rules={
      'digit': {'res.0': lambda value_: int(value_)}
    }
  )
  assert_equal(attr_g.attrs, {'res'})
  assert_equal(attr_g.syn_attrs, {'res'})
  assert_equal(attr_g.inh_attrs, set())

  word = '5+7'
  tokens = ['digit', '+', 'digit']
  tokens_pos = [0, 1, 2]
  print('tokens:', tokens, 'with decomposition', tokens_pos)
  parser = ParserGenerator(g)
  right_analysis, attr_eval = parser.parse_syn_attr_analysis(attr_g, word, tokens, tokens_pos)
  print('right analysis:', right_analysis)
  print('attribute eval (online):', attr_eval)
  assert_equal(right_analysis, (g.prods[0], g.prods[1], g.prods[2], g.prods[4], g.prods[4]))
  assert_equal(attr_eval, {'res': 5 + 7})
  tree = parser.parse_tree(word, tokens, tokens_pos)
  print('parse tree:', tree)
  assert_equal(
    tree, SyntaxTree(g.prods[0], SyntaxTree(
      g.prods[1], SyntaxTree(g.prods[4], None), None, SyntaxTree(g.prods[2], SyntaxTree(g.prods[4], None)))))
  attr_eval_gen = AttributeEvalGenerator(attr_g)
  tree_attr_eval = attr_eval_gen.eval_attrs(tree, word, tokens, tokens_pos)
  print('attribute eval (using tree):', tree_attr_eval)
  assert_equal(tree_attr_eval, {'res': 5 + 7})
Пример #11
0
def test_ParserGenerator_parse_tree_epsilon():
  g = Grammar(
    Production('S', 'A'),
    Production('A'),
    Production('A', 'B'),
    Production('B', 'a'),
    Production('B', 'a', 'B')
  )
  parser = ParserGenerator(g)
  word = 'aaa'
  tokens = ['a', 'a', 'a']
  tokens_pos = [0, 1, 2]
  assert_equal(
    parser.parse_analysis(word, tokens, tokens_pos), (g.prods[0], g.prods[2], g.prods[4], g.prods[4], g.prods[3]))
  assert_equal(
    parser.parse_tree(word, tokens, tokens_pos),
    SyntaxTree(g.prods[0], SyntaxTree(g.prods[2], SyntaxTree(g.prods[4], None, SyntaxTree(g.prods[4], None, SyntaxTree(
      g.prods[3], None))))))
Пример #12
0
def test_ParserGenerator_cfg_with_lexer():
  g = Grammar(
    Production('Grammar', 'Decl'),
    Production('Decl', 'Prod', ';', 'Decl'),
    Production('Decl', 'Prod'),
    Production('Prod', 'Symb', '->', 'Right'),
    Production('Right', 'Symbs', '|', 'Symbs'),
    Production('Right', 'Symbs'),
    Production('Symbs', 'Symb', 'Symbs'),
    Production('Symbs'),
  )
  lexer = LexerGenerator([';', '->', '|', 'Symb'], ['; *|[\n\r ]+', ' *\\-> *', ' *\\| *', '([a-z]|[A-Z])+'])
  parser = ParserGenerator(g)
  word = 'A->Bc|B; B->ca'
  print('input word:', word)
  tokens, tokens_pos = lexer.tokenize(word)
  print('tokenized word:', tokens, 'with decomposition', tokens_pos)
  analysis = parser.parse_analysis(word, tokens, tokens_pos)
  print('right-most analysis:', analysis)
Пример #13
0
def test_make_first1_sets():
  g = Grammar(
    Production('S', 'S', 'O', 'S'),
    Production('S', '(', 'S', ')'),
    Production('S', '0'),
    Production('S', '1'),
    Production('O', '+'),
    Production('O', '*'),
  )
  assert_equal(set(g.terminals), {'0', '1', '(', ')', '+', '*'})
  assert_equal(set(g.non_terminals), {'S', 'O'})
  first1 = make_first1_sets(g)
  print('first1 sets:', first1)
  assert_equal(first1['S'], {'0', '1', '('})
  assert_equal(first1['O'], {'+', '*'})
  assert_equal(get_first1_set_for_word(first1, ('(', 'S')), {'('})
Пример #14
0
def test_AttributeEvalGenerator_typed_arithmetic():
    import math
    import numpy as np
    lexer = LexerGenerator(token_names=[
        '(', ')', '+', '-', '*', '**', '/', '[', ']', ',', 'const', 'name',
        IGNORED_TOKEN
    ],
                           token_regex_table=[
                               '\\(', '\\)', '\\+', '\\-', '\\*', '\\*\\*',
                               '/', '\\[', '\\]', ',',
                               '(0|[1-9][0-9]*)(\\.[0-9]+)?', '([a-z]|[A-Z])+',
                               ' +'
                           ])
    # left associative (except ** that is right associative), with operator precedence
    g = Grammar(Production('Expr', 'Sum'), Production('Sum', 'Sum', '+',
                                                      'Prod'),
                Production('Sum', 'Sum', '-', 'Prod'),
                Production('Sum', 'Prod'),
                Production('Prod', 'Prod', '*', 'Pow'),
                Production('Prod', 'Prod', '/', 'Pow'),
                Production('Prod', 'Pow'),
                Production('Pow', 'Term', '**', 'Pow'),
                Production('Pow', 'Term'), Production('Term', '-', 'NegTerm'),
                Production('Term', 'NegTerm'),
                Production('NegTerm', '(', 'Sum', ')'),
                Production('NegTerm', 'name', '(', 'Sum', ')'),
                Production('NegTerm', 'const'),
                Production('NegTerm', '[', 'ExprList', ']'),
                Production('ExprList', 'Sum'),
                Production('ExprList', 'ExprList', ',', 'Sum'))

    ERROR = None

    def op_plus_res(type, res):
        left, right, left_type, right_type = res(1), res(3), type(1), type(3)
        if left is ERROR or right is ERROR:
            return ERROR
        if left_type == right_type in {'num', 'vec', 'mat'}:
            if np.shape(left) != np.shape(right):
                return ERROR
            return left + right
        return ERROR

    def op_minus_res(type, res):
        left, right, left_type, right_type = res(1), res(3), type(1), type(3)
        if left is ERROR or right is ERROR:
            return ERROR
        if left_type == right_type in {'num', 'vec', 'mat'}:
            if np.shape(left) != np.shape(right):
                return ERROR
            return left - right
        return ERROR

    def op_times_type(type):
        left_type, right_type = type(1), type(3)
        if left_type == right_type == 'num':
            return 'num'
        if (left_type == 'vec'
                and right_type == 'num') or (left_type == 'num'
                                             and right_type == 'vec'):
            return 'vec'
        if left_type == 'mat' or right_type == 'mat':
            return 'mat'
        return ERROR

    def op_times_res(type, res):
        left, right, left_type, right_type = res(1), res(3), type(1), type(3)
        if left is ERROR or right is ERROR:
            return ERROR
        if left_type not in {'num', 'vec', 'mat'
                             } or right_type not in {'num', 'vec', 'mat'}:
            return ERROR
        if left_type == 'num' or right_type == 'num':
            return left * right
        if left_type == 'mat' or right_type == 'mat':
            if left_type == 'vec':
                assert right_type == 'mat'
                if np.shape(left)[0] != np.shape(right)[0]:
                    return ERROR
                return np.matmul(left, right)
            if right_type == 'vec':
                assert left_type == 'mat'
                if np.shape(left)[1] != np.shape(right)[0]:
                    return ERROR
                return np.matmul(left, right)
            assert left_type == right_type == 'mat'
            if np.shape(left)[1] != np.shape(right)[0]:
                return ERROR
            return np.matmul(left, right)
        return ERROR

    def op_divided_res(type, res):
        left, right, left_type, right_type = res(1), res(3), type(1), type(3)
        if left is ERROR or right is ERROR:
            return ERROR
        if left_type not in {'num', 'vec', 'mat'
                             } or right_type not in {'num', 'vec', 'mat'}:
            return ERROR
        if right_type == 'num':
            return left / right
        return ERROR

    def op_pow_res(type, res):
        left, right, left_type, right_type = res(1), res(3), type(1), type(3)
        if left is ERROR or right is ERROR:
            return ERROR
        if left_type == right_type == 'num':
            assert isinstance(left, (float, int)) and isinstance(
                right, (float, int))
            return left**right
        if left_type == 'mat' and right_type == 'num':
            if np.shape(left)[0] != np.shape(left)[1]:
                return ERROR
            return left**right
        return ERROR

    def op_neg_res(type, res):
        type_, res_ = type(2), res(2)
        if res_ is ERROR:
            return ERROR
        if type_ in {'num', 'vec', 'mat'}:
            return -res_
        return ERROR

    def op_func_type(type, name):
        arg_type = type(3)
        if name(1) in {'ones', 'zeros'}:
            return 'vec'
        if name(1) in {'len'}:
            return 'num'
        return arg_type

    def op_func_res(type, res, name):
        arg, arg_type = res(3), type(3)
        if arg is ERROR:
            return ERROR
        if name(1) in {'ones', 'zeros'}:
            if arg_type != 'num' or arg <= 1:
                return ERROR
            assert isinstance(arg, (float, int))
            return (np.ones if name(1) == 'ones' else np.zeros)(int(arg))
        if name(1) == 'len':
            if arg_type != 'vec':
                return ERROR
            return np.linalg.norm(arg)
        if arg_type == 'num':
            if not hasattr(math, name(1)):
                return ERROR
            return getattr(math, name(1))(arg)
        return ERROR

    def op_const_vec_type(type_list, res_list):
        type_list_, res_list_ = type_list(2), res_list(2)
        assert len(type_list_) == len(res_list_)
        if len(type_list_) == 0:
            return ERROR
        type = type_list_[0]
        if not all(t == type for t in type_list_):
            return ERROR
        if type == 'num':
            return 'vec'
        if type == 'vec':
            return 'mat'
        return ERROR

    def op_const_vec_res(type_list, res_list):
        type_list_, res_list_ = type_list(2), res_list(2)
        assert len(type_list_) == len(res_list_)
        if len(type_list_) == 0:
            return ERROR
        type = type_list_[0]
        if not all(t == type for t in type_list_):
            return ERROR
        if type in {'num', 'vec'}:
            if type == 'vec':
                length = len(res_list_[0])
                if not all(len(vec) == length for vec in res_list_):
                    return ERROR
            return np.array(res_list_)
        return ERROR

    attr_g = AttributeGrammar(
        g,
        syn_attrs={'type', 'res', 'name', 'type_list', 'res_list'},
        prod_attr_rules=[{
            'type': 'type.1',
            'res': 'res.1'
        }, {
            'type': 'type.1',
            'res': op_plus_res
        }, {
            'type': 'type.1',
            'res': op_minus_res
        }, {
            'type': 'type.1',
            'res': 'res.1'
        }, {
            'type': op_times_type,
            'res': op_times_res
        }, {
            'type': op_times_type,
            'res': op_divided_res
        }, {
            'type': 'type.1',
            'res': 'res.1'
        }, {
            'type': 'type.1',
            'res': op_pow_res
        }, {
            'type': 'type.1',
            'res': 'res.1'
        }, {
            'type': 'type.2',
            'res': op_neg_res
        }, {
            'type': 'type.1',
            'res': 'res.1'
        }, {
            'type': 'type.2',
            'res': 'res.2'
        }, {
            'type': op_func_type,
            'res': op_func_res
        }, {
            'type': 'type.1',
            'res': 'res.1'
        }, {
            'type': op_const_vec_type,
            'res': op_const_vec_res
        }, {
            'type_list': lambda type: [type(1)],
            'res_list': lambda res: [res(1)]
        }, {
            'type_list':
            lambda type, type_list: type_list(1) + [type(3)],
            'res_list':
            lambda res, res_list: res_list(1) + [res(3)]
        }],
        terminal_attr_rules={
            'const': {
                'res': lambda lit: float(lit),
                'type': lambda _: 'num'
            },
            'name': {
                'name': lambda lit: lit
            }
        })
    parser = ParserGenerator(g)

    def evaluate(word, expected_result, expected_type=None):
        print('----')
        print('input word:', word)
        tokens, tokens_pos = lexer.tokenize(word)
        print('tokens:', tokens, 'with decomposition', tokens_pos)
        analysis, result = parser.parse_syn_attr_analysis(
            attr_g, word, tokens, tokens_pos)
        print('result:')
        print(result['res'])
        if isinstance(expected_result, (float, int)):
            assert_almost_equal(result['res'], expected_result)
        else:
            np.testing.assert_equal(result['res'], expected_result)
        if result['res'] is not ERROR:
            print('result type:', result['type'])
            assert_equal(result['type'], expected_type)

    evaluate('1*2+3', 5, 'num')
    evaluate('5-3', 2, 'num')
    evaluate('(1+2)*3', 9, 'num')
    evaluate('1+2+3', 6, 'num')
    evaluate('1-2+3', 2, 'num')
    evaluate('3-2-1', 0, 'num')
    evaluate('1*2+3*4', 14, 'num')
    evaluate('4/2-1', 1, 'num')
    evaluate('sin(3.1415)', 9.26535897e-5, 'num')
    evaluate('2**2**3', 256, 'num')
    evaluate('(2**2)**3', 64, 'num')
    evaluate('(3**2+4**2)**0.5', 5, 'num')
    evaluate('ones(4)', [1, 1, 1, 1], 'vec')
    evaluate('ones(4) * 5', [5, 5, 5, 5], 'vec')
    evaluate('ones(2) - ones(2) * 0', [1, 1], 'vec')
    evaluate('2 ** ones(2)', ERROR)
    evaluate('[1 , 2 , 3]', [1, 2, 3], 'vec')
    evaluate('[1, 2] + 2 * [3, 2]', [7, 6], 'vec')
    evaluate('[[1,2],[3,4]]', [[1, 2], [3, 4]], 'mat')
    evaluate('[ones(2)]', [[1, 1]], 'mat')
    evaluate('[ones(3), ones(4)]', ERROR)
    evaluate('zeros(0+2-2)', ERROR)
    evaluate('[[1,0,0],[0,1,0],[0,0,1]]', [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
             'mat')
    evaluate('[[1,0,0],[0,1,0],[0,0,1]]+[[0,1]]', ERROR)
    evaluate('[[1,0,0],[0,1,0],[0,0,1]]+[[1,0,0],[0,1,0],[0,0,1]]',
             [[2, 0, 0], [0, 2, 0], [0, 0, 2]], 'mat')
    evaluate('[[1,0,0],[0,1,0],[0,0,1]]+0*[[1,0,0],[0,1,0],[0,0,1]]',
             [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 'mat')
    evaluate('[[1,0],[0,1]] ** 5', [[1, 0], [0, 1]], 'mat')
    evaluate('[[0,2],[1,1]] + 3 * [[3,0],[1,1]]', [[9, 2], [4, 4]], 'mat')
    evaluate('[[1,0,3,-2],[3,2,1,0]] * [[2,1,0],[0,1,0],[-1,4,1],[3,2,-1]]',
             [[-7, 9, 5], [5, 9, 1]], 'mat')
    evaluate('2**-3', 2**-3, 'num')
    evaluate('2--3', 5, 'num')
    evaluate('-[1,0]*4', [-4, 0], 'vec')
    evaluate('[1,2,3]*[1,2]', ERROR)
    evaluate('len([3,4])', 5, 'num')
    evaluate('len(4)', ERROR)
    evaluate('len([[2,3],[1,2]])', ERROR)
    evaluate('(((((((((7)))))))))', 7, 'num')
Пример #15
0
def test_AttributeEvalGenerator_check_declaredness():
    lexer = LexerGenerator(
        [';', '=', 'const', 'name'],
        [';', '=', '(0|[1-9])[0-9]*(\\.[0-9]*)?', '([a-z]|[A-Z])+'])
    g = Grammar(
        Production('Prog0', 'Decls'),
        Production('Decls', 'Decl'),
        Production('Decls', 'Decl', ';', 'Decls'),
        Production('Decl', 'name', '=', 'Var'),
        Production('Var', 'name'),
        Production('Var', 'const'),
    )
    parser = ParserGenerator(g)
    attr_g = AttributeGrammar(
        g,
        inh_attrs={'decl_i'},
        syn_attrs={'decl_s', 'name', 'ok'},
        prod_attr_rules=[{
            'decl_i.1': set(),
            'decl_s.0': 'decl_s.1',
            'ok': 'ok.1'
        }, {
            'decl_i.1': 'decl_i.0',
            'decl_s.0': 'decl_s.1',
            'ok': 'ok.1'
        }, {
            'decl_i.1': 'decl_i.0',
            'decl_i.3': 'decl_s.1',
            'decl_s.0': 'decl_s.3',
            'ok': lambda ok: ok(1) and ok(3)
        }, {
            'decl_i.3': 'decl_i.0',
            'decl_s.0': lambda decl_i, name: decl_i(0) | {name(1)},
            'ok.0': 'ok.3'
        }, {
            'ok.0': lambda decl_i, name: name(1) in decl_i(0)
        }, {
            'ok.0': True
        }],
        terminal_attr_rules={'name': {
            'name.0': lambda value: value
        }})
    attr_eval_gen = AttributeEvalGenerator(attr_g)

    def evaluate(word, target_eval):
        print('----')
        print('input word:', word)
        tokens, tokens_pos = lexer.tokenize(word)
        print('tokens:', tokens, 'with decomposition', tokens_pos)
        tree = parser.parse_tree(word, tokens, tokens_pos)
        print('parsed tree:', tree)
        tree_attr_eval = attr_eval_gen.eval_attrs(tree, word, tokens,
                                                  tokens_pos)
        print('attribute eval:', tree_attr_eval)
        assert_equal(tree_attr_eval, target_eval)

    evaluate('alpha=5;beta=7;gamma=alpha', {
        'decl_s': {'alpha', 'beta', 'gamma'},
        'ok': True
    })
    evaluate('alpha=5;beta=alpha;gamma=alpha', {
        'decl_s': {'alpha', 'beta', 'gamma'},
        'ok': True
    })
    evaluate('alpha=1;beta=alpha;gamma=beta', {
        'decl_s': {'alpha', 'beta', 'gamma'},
        'ok': True
    })
    evaluate('alpha=alpha', {'decl_s': {'alpha'}, 'ok': False})
    evaluate('alpha=1.0;beta=gamma', {
        'decl_s': {'alpha', 'beta'},
        'ok': False
    })
    evaluate('alpha=1.0;beta=4.0;gamma=beta;delta=alpha;alpha=alpha', {
        'decl_s': {'alpha', 'beta', 'gamma', 'delta'},
        'ok': True
    })
Пример #16
0
from sleepy.ast import FileAst, AbstractScopeAst, annotate_ast, ExpressionStatementAst, ReturnStatementAst, \
  AssignStatementAst, IdentifierExpressionAst, MemberExpressionAst, \
  IfStatementAst, WhileStatementAst, ConstantExpressionAst, \
  StringLiteralExpressionAst, CallExpressionAst, AnnotationAst, UnionTypeAst, IdentifierTypeAst, ImportsAst, \
  UnbindExpressionAst, StructDeclarationAst
from sleepy.builtin_symbols import SLEEPY_DOUBLE, SLEEPY_FLOAT, SLEEPY_INT, SLEEPY_LONG, SLEEPY_CHAR
from sleepy.functions import FunctionDeclarationAst
from sleepy.syntactical_analysis.grammar import AttributeGrammar, Production
from sleepy.syntactical_analysis.parser import ParserGenerator
from sleepy.token_value_parsing import parse_assign_op, parse_long, parse_double, parse_float, parse_char, parse_string, \
  parse_hex_int

SLEEPY_ATTR_GRAMMAR = AttributeGrammar.from_dict(
    prods_attr_rules={
        Production('S', 'File'): {
            'ast': 'ast.1'
        },
        Production('File', 'SeparatedImportDecl?', 'BracelessScope'): {
            'ast':
            lambda _pos, ast: FileAst(_pos, scope=ast(2), imports_ast=ast(1))
        },
        Production('SeparatedImportDecl?'): {
            'ast': lambda _pos: ImportsAst(pos=_pos, imports=[])
        },
        Production('SeparatedImportDecl?', 'ImportDecl'): {
            'ast': 'ast.1'
        },
        Production('ImportDecl', 'import', 'Import', 'ImportNames'): {
            'ast':
            lambda _pos, path, paths: ImportsAst(_pos,
                                                 imports=[path(2)] + paths(3))
Пример #17
0
from typing import List, Dict, Set, Optional, Tuple

from sleepy.syntactical_analysis.automaton import NonDeterministicAutomaton, make_dfa_from_nfa, DeterministicAutomaton, OTHER_CHAR
from sleepy.errors import LexError
from sleepy.syntactical_analysis.grammar import Grammar, Production, EPSILON, IGNORED_TOKEN, get_token_word_from_tokens_pos, DummyPath
from sleepy.syntactical_analysis.parser import ParserGenerator

REGEX_LIT_TOKEN = 'a'
REGEX_SPECIAL_TOKENS = frozenset(
    {'(', ')', '\\', '-', '[', ']', '*', '+', '?', '|', '^', '.'})
# Currently we only recognize 7-bit ASCII
REGEX_RECOGNIZED_CHARS = frozenset({OTHER_CHAR}
                                   | {chr(c)
                                      for c in range(0, 128)})

REGEX_CHOICE_OP = Production('Choice', 'Choice', '|', 'Concat')
REGEX_CONCAT_OP = Production('Concat', 'Concat', 'Repeat')
REGEX_REPEAT_OP = Production('Repeat', 'Range', '*')
REGEX_REPEAT_EXISTS_OP = Production('Repeat', 'Range', '+')
REGEX_OPTIONAL_OP = Production('Repeat', 'Range', '?')
REGEX_RANGE_OP = Production('Range', '[', 'a', '-', 'a', ']')
REGEX_RANGE_LITS_OP = Production('Range', '[', 'Lits', ']')
REGEX_INV_RANGE_OP = Production('Range', '[', '^', 'a', '-', 'a', ']')
REGEX_INV_RANGE_LITS_OP = Production('Range', '[', '^', 'Lits', ']')
REGEX_LIT_OP = Production('Lit', REGEX_LIT_TOKEN)
REGEX_LIT_ANY_OP = Production('Lit', '.')
REGEX_LITS_MULTIPLE_OP = Production('Lits', 'a', 'Lits')
REGEX_LITS_SINGLE_OP = Production('Lits', 'a')

REGEX_GRAMMAR = Grammar(Production('Regex', 'Choice'), REGEX_CHOICE_OP,
                        Production('Choice', 'Concat'), REGEX_CONCAT_OP,
Пример #18
0
def test_ParserGenerator_cfg():
  g = Grammar(
    Production('Grammar', 'Decl'),
    Production('Decl', 'Prod', ';', 'Decl'),
    Production('Decl', 'Prod', '\n', 'Decl'),
    Production('Decl', 'Prod'),
    Production('Prod', 'Symb', '->', 'Right'),
    Production('Right', 'Symbs', '|', 'Symbs'),
    Production('Right', 'Symbs'),
    Production('Symbs', 'Symb', 'Symbs'),
    Production('Symbs'),
    Production('Symb', 'A'),
    Production('Symb', 'B'),
    Production('Symb', 'C'),
    Production('Symb', 'a'),
    Production('Symb', 'b'),
    Production('Symb', 'c')
  )
  parser = ParserGenerator(g)
  tokens = ['A', '->', 'B', 'c', '|', 'B', ';', 'B', '->', 'c', 'a']
  print('tokenized word:', tokens)
  analysis = parser.parse_analysis(''.join(tokens), tokens, list(range(len(tokens))))
  print('right-most analysis:', analysis)
Пример #19
0
def test_ParserGenerator_arithmetic_syn():
  import math
  lexer = LexerGenerator(
    token_names=['(', ')', '+', '-', '*', '**', '/', 'const', 'func'],
    token_regex_table=[
      '\\(', '\\)', '\\+', '\\-', '\\*', '\\*\\*', '/', '(0|[1-9][0-9]*)(\\.[0-9]+)?', '([a-z]|[A-Z])+']
  )
  # left associative (except ** that is right associative), with operator precedence
  g = Grammar(
    Production('Expr', 'Sum'),
    Production('Sum', 'Sum', '+', 'Prod'),
    Production('Sum', 'Sum', '-', 'Prod'),
    Production('Sum', 'Prod'),
    Production('Prod', 'Prod', '*', 'Pow'),
    Production('Prod', 'Prod', '/', 'Pow'),
    Production('Prod', 'Pow'),
    Production('Pow', 'Term', '**', 'Pow'),
    Production('Pow', 'Term'),
    Production('Term', '(', 'Sum', ')'),
    Production('Term', 'func', '(', 'Sum', ')'),
    Production('Term', 'const')
  )
  attr_g = AttributeGrammar(
    g,
    syn_attrs={'res', 'name'},
    prod_attr_rules=[
      {'res': lambda res: res(1)},
      {'res': lambda res: res(1) + res(3)},
      {'res': lambda res: res(1) - res(3)},
      {'res': lambda res: res(1)},
      {'res': lambda res: res(1) * res(3)},
      {'res': lambda res: res(1) / res(3)},
      {'res': lambda res: res(1)},
      {'res': lambda res: res(1) ** res(3)},
      {'res': lambda res: res(1)},
      {'res': lambda res: res(2)},
      {'res': lambda res, name: getattr(math, name(1))(res(3))},
      {'res': lambda res: res(1)},
    ],
    terminal_attr_rules={
      'const': {'res': lambda lit: float(lit)},
      'func': {'name': lambda lit: lit}
    }
  )
  parser = ParserGenerator(g)

  def evaluate(word_):
    print('----')
    print('input word:', word_)
    tokens, tokens_pos = lexer.tokenize(word_)
    print('tokens:', tokens, 'with decomposition', tokens_pos)
    analysis, result = parser.parse_syn_attr_analysis(attr_g, word_, tokens, tokens_pos)
    print('result:', result['res'])
    # import common operator names for python eval()
    sin, cos, tan, exp, sqrt = math.sin, math.cos, math.tan, math.exp, math.sqrt  # noqa
    assert_equal(result['res'], eval(word_))

  for word in [
    '1*2+3', '5-3', '(1+2)*3', '1+2+3', '1+2-3', '1-2+3', '3-2-1', '1*2+3*4', '4/2-1', 'sin(3.1415)', '2**2**3',
    '(2**2)**3', '(3**2+4**2)**0.5']:
    evaluate(word)