def lane_fit_on_prediction(Roi_img, src, dst, dst_size):

    warped_img, M = sliding_window_approach.perspective_warp(
        Roi_img, dst_size, src, dst)

    margin = 35
    nwindows = 12

    # InitialPoints Estimation using K-Means clustering
    margin, margin_1, modifiedCenters = sliding_window_approach.initialPoints(
        warped_img, margin)

    # Sliding Window Search
    out_img, curves, lanes, ploty = sliding_window_approach.sliding_window(
        warped_img, modifiedCenters, nwindows, margin, margin_1)

    return warped_img, out_img, curves, lanes, ploty, modifiedCenters
#!/usr/bin/env python
import rospy
import numpy as np
import cv2
from cv_bridge import CvBridge
from sensor_msgs.msg import Image
import os
os.environ[
    'PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"  # Hides the pygame version, welcome msg
from os.path import expanduser
import glob
import scipy.signal as signal
import sliding_window_approach

DBASW = sliding_window_approach.sliding_window()


class hilly_nav():
    def __init__(self):
        self.image = Image()
        self.roi_img = Image()
        self.final_img = []

        self.modifiedCenters_local = []
        self.crop_ratio = 0.3  # Ratio to crop the background parts in the image from top

        self.centerLine = []

    def segment_image(self):

        # define range of blue color in HSV