def predict(models_path,image_path,labels_filename,labels_nums, data_format): #[batch_size, resize_height, resize_width, depths] = data_format tf.reset_default_graph() #labels = np.loadtxt(labels_filename, str, delimiter='\t') input_images = tf.placeholder(dtype=tf.float32, shape=[None, resize_height, resize_width, depths], name='input') with slim.arg_scope(alaxnet.alexnet_v2_arg_scope()): out, end_points = alaxnet.alexnet_v2(inputs=input_images, num_classes=labels_nums, dropout_keep_prob=1.0, is_training=False) # 将输出结果进行softmax分布,再求最大概率所属类别 score = tf.nn.softmax(out,name='pre') class_id = tf.argmax(score, 1) # sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(sess, models_path) im=read_image(image_path,resize_height,resize_width,normalization=True) im=im[np.newaxis,:] pre_score,pre_label = sess.run([score,class_id], feed_dict={input_images:im}) sess.close() return pre_label[0]
def predict(models_path,image_dir,labels_filename,labels_nums, data_format): [batch_size, resize_height, resize_width, depths] = data_format labels = np.loadtxt(labels_filename, str, delimiter='\t') input_images = tf.placeholder(dtype=tf.float32, shape=[None, resize_height, resize_width, depths], name='input') with slim.arg_scope(alaxnet.alexnet_v2_arg_scope()): out, end_points = alaxnet.alexnet_v2(inputs=input_images, num_classes=labels_nums, dropout_keep_prob=1.0, is_training=False) # 将输出结果进行softmax分布,再求最大概率所属类别 score = tf.nn.softmax(out,name='pre') class_id = tf.argmax(score, 1) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(sess, models_path) images_list=glob.glob(os.path.join(image_dir,'*.jpg')) score_total = 0 for image_path in images_list: im=read_image(image_path,resize_height,resize_width,normalization=True) im=im[np.newaxis,:] #pred = sess.run(f_cls, feed_dict={x:im, keep_prob:1.0}) pre_score,pre_label = sess.run([score,class_id], feed_dict={input_images:im}) max_score=pre_score[0,pre_label] #print("{} is: pre labels:{},name:{} score: {}".format(image_path, pre_label, labels[pre_label], max_score)) if image_path.split(".jpg")[0].split("-")[2] == labels[pre_label]: score_total += 1 print("{} is predicted as label::{} ".format(image_path, labels[pre_label])) else: print("{} is predicted as label::{} ".format(image_path,labels[pre_label])) print("valuation accuracy is {}".format(score_total/len(images_list))) sess.close()
def predict(image_dir, onset_frames, onsets_frames_strength, models_path): class_nums = 2 onsets = [] onsets_strength = {} batch_size = 1 # resize_height = 224 # 指定存储图片高度 resize_width = 224 # 指定存储图片宽度 depths = 3 data_format = [batch_size, resize_height, resize_width, depths] [batch_size, resize_height, resize_width, depths] = data_format #labels = np.loadtxt(labels_filename, str, delimiter='\t') input_images = tf.placeholder( dtype=tf.float32, shape=[None, resize_height, resize_width, depths], name='input') with slim.arg_scope(alaxnet.alexnet_v2_arg_scope()): out, end_points = alaxnet.alexnet_v2(inputs=input_images, num_classes=class_nums, dropout_keep_prob=1.0, is_training=False) # 将输出结果进行softmax分布,再求最大概率所属类别 score = tf.nn.softmax(out, name='pre') class_id = tf.argmax(score, 1) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(sess, models_path) images_list = sorted(glob.glob(os.path.join(image_dir, '*.jpg')), key=os.path.getmtime) #sorted(glob.glob('*.png'), key=os.path.getmtime) score_total = 0 index = 0 for image_path in images_list: im = read_image(image_path, resize_height, resize_width, normalization=True) im = im[np.newaxis, :] #pred = sess.run(f_cls, feed_dict={x:im, keep_prob:1.0}) pre_score, pre_label = sess.run([score, class_id], feed_dict={input_images: im}) max_score = pre_score[0, pre_label] #print("{} is: pre labels:{},name:{} score: {}".format(image_path, pre_label, labels[pre_label], max_score)) print("{} is predicted as label::{} ".format(image_path, pre_label[0])) if 1 == pre_label[0]: #score_total += 1 onsets.append(onset_frames[index]) onsets_strength[onset_frames[index]] = onsets_frames_strength.get( onset_frames[index]) else: pass index += 1 print("valuation accuracy is {}".format(score_total / len(images_list))) sess.close() return onsets, onsets_strength
def train(train_record_file, train_log_step, train_param, val_record_file, val_log_step, labels_nums, data_shape, snapshot, snapshot_prefix): ''' :param train_record_file: 训练的tfrecord文件 :param train_log_step: 显示训练过程log信息间隔 :param train_param: train参数 :param val_record_file: 验证的tfrecord文件 :param val_log_step: 显示验证过程log信息间隔 :param val_param: val参数 :param labels_nums: labels数 :param data_shape: 输入数据shape :param snapshot: 保存模型间隔 :param snapshot_prefix: 保存模型文件的前缀名 :return: ''' [base_lr, max_steps] = train_param [batch_size, resize_height, resize_width, depths] = data_shape # 获得训练和测试的样本数 print('train nums:%d,val nums:%d' % (train_nums, val_nums)) # 从record中读取图片和labels数据 # train数据,训练数据一般要求打乱顺序shuffle=True train_images_batch, train_labels_batch = get_batch_images( train_record_file) # val数据,验证数据可以不需要打乱数据 val_images_batch, val_labels_batch = get_batch_images(val_record_file) # Define the model: with slim.arg_scope(alexnet.alexnet_v2_arg_scope()): out, end_points = alexnet.alexnet_v2(inputs=input_images, num_classes=labels_nums, dropout_keep_prob=keep_prob, is_training=is_training) # Specify the loss function: tf.losses定义的loss函数都会自动添加到loss函数,不需要add_loss()了 tf.losses.softmax_cross_entropy(onehot_labels=input_labels, logits=out) #添加交叉熵损失loss=1.6 # slim.losses.add_loss(my_loss) loss = tf.losses.get_total_loss( add_regularization_losses=True) #添加正则化损失loss=2.2 accuracy = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(input_labels, 1)), tf.float32)) # Specify the optimization scheme: optimizer = tf.train.GradientDescentOptimizer(learning_rate=base_lr) # create_train_op that ensures that when we evaluate it to get the loss, # the update_ops are done and the gradient updates are computed. train_op = slim.learning.create_train_op(total_loss=loss, optimizer=optimizer) # global_step = tf.Variable(0, trainable=False) # learning_rate = tf.train.exponential_decay(0.05, global_step, 150, 0.9) # # optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9) # # train_op = optimizer.minimize(loss, global_step) # train_op = slim.learning.create_train_op(loss, optimizer,global_step=global_step) saver = tf.train.Saver() max_acc = 0.0 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(max_steps + 1): batch_input_images, batch_input_labels = sess.run( [train_images_batch, train_labels_batch]) _, train_loss = sess.run( [train_op, loss], feed_dict={ input_images: batch_input_images, input_labels: batch_input_labels, keep_prob: 0.5, is_training: True }) # train测试(这里仅测试训练集的一个batch) if i % train_log_step == 0: train_acc = sess.run(accuracy, feed_dict={ input_images: batch_input_images, input_labels: batch_input_labels, keep_prob: 1.0, is_training: False }) print( "%s: Step [%d] train Loss : %f, training accuracy : %g" % (datetime.now(), i, train_loss, train_acc)) # val测试(测试全部val数据) if i % val_log_step == 0: mean_loss, mean_acc = net_evaluation(sess, loss, accuracy, val_images_batch, val_labels_batch, val_nums) print("%s: Step [%d] val Loss : %f, val accuracy : %g" % (datetime.now(), i, mean_loss, mean_acc)) # 模型保存:每迭代snapshot次或者最后一次保存模型 if (i % snapshot == 0 and i > 0) or i == max_steps: print('-----save:{}-{}'.format(snapshot_prefix, i)) saver.save(sess, snapshot_prefix, global_step=i) # 保存val准确率最高的模型 if mean_acc > max_acc and mean_acc > 0.5: max_acc = mean_acc path = os.path.dirname(snapshot_prefix) best_models = os.path.join( path, 'best_models_{}_{:.4f}.ckpt'.format(i, max_acc)) print('------save:{}'.format(best_models)) saver.save(sess, best_models) coord.request_stop() coord.join(threads)
def train(train_record_file, train_log_step, train_param, val_record_file, val_log_step, labels_nums, data_shape, snapshot, snapshot_prefix): ''' :param train_record_file: 训练的tfrecord文件 :param train_log_step: 显示训练过程log信息间隔 :param train_param: train参数 :param val_record_file: 验证的tfrecord文件 :param val_log_step: 显示验证过程log信息间隔 :param val_param: val参数 :param labels_nums: labels数 :param data_shape: 输入数据shape :param snapshot: 保存模型间隔 :param snapshot_prefix: 保存模型文件的前缀名 :return: ''' [base_lr, max_steps] = train_param [batch_size, resize_height, resize_width, depths] = data_shape # 获得训练和测试的样本数 train_nums = get_example_nums(train_record_file) val_nums = get_example_nums(val_record_file) print('train nums:%d,val nums:%d' % (train_nums, val_nums)) regularizer = slim.l2_regularizer(0.0005) # 从record中读取图片和labels数据 # train数据,训练数据一般要求打乱顺序shuffle=True train_images, train_labels = read_records(train_record_file, resize_height, resize_width, type='normalization') train_images_batch, train_labels_batch = get_batch_images( train_images, train_labels, batch_size=batch_size, labels_nums=labels_nums, one_hot=True, shuffle=True) # val数据,验证数据可以不需要打乱数据 val_images, val_labels = read_records(val_record_file, resize_height, resize_width, type='normalization') val_images_batch, val_labels_batch = get_batch_images( val_images, val_labels, batch_size=batch_size, labels_nums=labels_nums, one_hot=True, shuffle=False) # Define the model: with slim.arg_scope(alaxnet.alexnet_v2_arg_scope()): out, end_points = alaxnet.alexnet_v2(inputs=input_images, num_classes=labels_nums, dropout_keep_prob=keep_prob, is_training=is_training) # Specify the loss function: tf.losses定义的loss函数都会自动添加到loss函数,不需要add_loss()了 tf.losses.softmax_cross_entropy(onehot_labels=input_labels, logits=out) #添加交叉熵损失loss=1.6 # slim.losses.add_loss(my_loss) loss = tf.losses.get_total_loss( add_regularization_losses=True) #添加正则化损失loss=2.2 accuracy = tf.reduce_mean( tf.cast(tf.equal(tf.argmax(out, 1), tf.argmax(input_labels, 1)), tf.float32)) score = tf.nn.softmax(out, name='score') classIds = tf.argmax(out, 1) # Specify the optimization scheme: # optimizer = tf.train.GradientDescentOptimizer(learning_rate=base_lr) # global_step = tf.Variable(0, trainable=False) # learning_rate = tf.train.exponential_decay(0.05, global_step, 150, 0.9) # optimizer = tf.train.MomentumOptimizer(learning_rate=base_lr, momentum=0.9) # # train_tensor = optimizer.minimize(loss, global_step) # train_op = slim.learning.create_train_op(loss, optimizer,global_step=global_step) # 在定义训练的时候, 注意到我们使用了`batch_norm`层时,需要更新每一层的`average`和`variance`参数, # 更新的过程不包含在正常的训练过程中, 需要我们去手动像下面这样更新 # 通过`tf.get_collection`获得所有需要更新的`op` update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # 使用`tensorflow`的控制流, 先执行更新算子, 再执行训练 with tf.control_dependencies(update_ops): # create_train_op that ensures that when we evaluate it to get the loss, # the update_ops are done and the gradient updates are computed. # train_op = slim.learning.create_train_op(total_loss=loss,optimizer=optimizer) train_op = slim.learning.create_train_op(total_loss=loss, optimizer=optimizer) # 循环迭代过程 step_train(train_op, loss, accuracy, score, classIds, train_images_batch, train_labels_batch, train_nums, train_log_step, val_images_batch, val_labels_batch, val_nums, val_log_step, snapshot_prefix, snapshot)
def predict(filename,image_dir,onset_frames,onsets_frames_strength,models_path,f_range): if onset_frames: class_nums = 2 onsets = [] onsets_strength = {} tf.reset_default_graph() batch_size = 1 # resize_height = 224 # 指定存储图片高度 resize_width = 224 # 指定存储图片宽度 depths = 3 data_format = [batch_size, resize_height, resize_width, depths] [batch_size, resize_height, resize_width, depths] = data_format #labels = np.loadtxt(labels_filename, str, delimiter='\t') input_images = tf.placeholder(dtype=tf.float32, shape=[None, resize_height, resize_width, depths], name='input') with slim.arg_scope(alaxnet.alexnet_v2_arg_scope()): out, end_points = alaxnet.alexnet_v2(inputs=input_images, num_classes=class_nums, dropout_keep_prob=1.0, is_training=False) # 将输出结果进行softmax分布,再求最大概率所属类别 score = tf.nn.softmax(out,name='pre') class_id = tf.argmax(score, 1) sess = tf.InteractiveSession() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(sess, models_path) images_list=sorted(glob.glob(os.path.join(image_dir,'*.png')), key=os.path.getmtime) # images_list = glob.glob(os.path.join(image_dir, '*.png')) #sorted(glob.glob('*.png'), key=os.path.getmtime) score_total = 0 index = 0 key_type = type(list(onsets_frames_strength.keys())[0]) for image_path in images_list: im=read_image(image_path,resize_height,resize_width,normalization=True) im=im[np.newaxis,:] #pred = sess.run(f_cls, feed_dict={x:im, keep_prob:1.0}) pre_score,pre_label = sess.run([score,class_id], feed_dict={input_images:im}) max_score=pre_score[0,pre_label] #print("{} is: pre labels:{},name:{} score: {}".format(image_path, pre_label, labels[pre_label], max_score)) print("{} is predicted as label::{} ".format(image_path,pre_label[0])) # 将判断为yes的节拍加入onsets if 1 == pre_label[0]: #score_total += 1 onsets.append(onset_frames[index]) onsets_strength[key_type(onset_frames[index])] = onsets_frames_strength.get(key_type(onset_frames[index])) else: pass index += 1 #accuracy = 0 #print("valuation accuracy is {}".format(accuracy)) sess.close() # if len(onsets)!=0: # y, sr = librosa.load(filename) # rms = librosa.feature.rmse(y=y)[0] # rms = [x / np.std(rms) for x in rms] # onsets,onsets_strength = remove_crowded_frames_by_rms(onsets,onsets_strength,rms,int(f_range*2)+2) return onsets,onsets_strength#,accuracy return [],{}
def predict(models_path, labels_nums, image_dir): #[batch_size, resize_height, resize_width, depths] = data_format resize_height = 224 # 指定存储图片高度 resize_width = 224 # 指定存储图片宽度 depths = 3 tf.reset_default_graph() #labels = np.loadtxt(labels_filename, str, delimiter='\t') input_images = tf.placeholder( dtype=tf.float32, shape=[None, resize_height, resize_width, depths], name='input') with slim.arg_scope(alaxnet.alexnet_v2_arg_scope()): out, end_points = alaxnet.alexnet_v2(inputs=input_images, num_classes=labels_nums, dropout_keep_prob=1.0, is_training=False) # 将输出结果进行softmax分布,再求最大概率所属类别 score = tf.nn.softmax(out, name='pre') class_id = tf.argmax(score, 1) # sess = tf.InteractiveSession() # sess.list_devices() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver() saver.restore(sess, models_path) image_list = os.listdir(image_dir) error_list = [] correct_list = [] all_indexs = get_indexs_from_filename(image_list) c = 0 for i in all_indexs: image_name = str(i) + ".jpg" image_path = image_dir + image_name index = int(image_name.split('.jpg')[0]) # image_path = image_path.replace("\\",os.altsep).replace("/",os.altsep) # print("index is {}".format(index)) if c == 0 or index > c: # if True: im = read_image(image_path, resize_height, resize_width, normalization=True) im = im[np.newaxis, :] pre_score, pre_label = sess.run([score, class_id], feed_dict={input_images: im}) if pre_label == 1: correct_list.append(index) c, middle_position = get_last_nearly_index(index, all_indexs) # print("=============") else: error_list.append(image_name) correct_list.sort() sess.close() return correct_list