def testBuildPreLogitsCifarModel(self): batch_size = 5 height, width = 32, 32 num_classes = None inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()): net, end_points = nasnet.build_nasnet_cifar(inputs, num_classes) self.assertFalse('AuxLogits' in end_points) self.assertFalse('Predictions' in end_points) self.assertTrue(net.op.name.startswith('final_layer/Mean')) self.assertListEqual(net.get_shape().as_list(), [batch_size, 768])
def testOverrideHParamsCifarModel(self): batch_size = 5 height, width = 32, 32 num_classes = 10 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = nasnet.cifar_config() config.set_hparam('data_format', 'NCHW') with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()): _, end_points = nasnet.build_nasnet_cifar(inputs, num_classes, config=config) self.assertListEqual(end_points['Stem'].shape.as_list(), [batch_size, 96, 32, 32])
def testNoAuxHeadCifarModel(self): batch_size = 5 height, width = 32, 32 num_classes = 10 for use_aux_head in (True, False): tf.reset_default_graph() inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() config = nasnet.cifar_config() config.set_hparam('use_aux_head', int(use_aux_head)) with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()): _, end_points = nasnet.build_nasnet_cifar(inputs, num_classes, config=config) self.assertEqual('AuxLogits' in end_points, use_aux_head)
def testBuildLogitsCifarModel(self): batch_size = 5 height, width = 32, 32 num_classes = 10 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()): logits, end_points = nasnet.build_nasnet_cifar(inputs, num_classes) auxlogits = end_points['AuxLogits'] predictions = end_points['Predictions'] self.assertListEqual(auxlogits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) self.assertListEqual(predictions.get_shape().as_list(), [batch_size, num_classes])
def testUseBoundedAcitvationCifarModel(self): batch_size = 1 height, width = 32, 32 num_classes = 10 for use_bounded_activation in (True, False): tf.reset_default_graph() inputs = tf.random_uniform((batch_size, height, width, 3)) config = nasnet.cifar_config() config.set_hparam('use_bounded_activation', use_bounded_activation) with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()): _, _ = nasnet.build_nasnet_cifar(inputs, num_classes, config=config) for node in tf.get_default_graph().as_graph_def().node: if node.op.startswith('Relu'): self.assertEqual(node.op == 'Relu6', use_bounded_activation)
def testAllEndPointsShapesCifarModel(self): batch_size = 5 height, width = 32, 32 num_classes = 10 inputs = tf.random_uniform((batch_size, height, width, 3)) tf.train.create_global_step() with slim.arg_scope(nasnet.nasnet_cifar_arg_scope()): _, end_points = nasnet.build_nasnet_cifar(inputs, num_classes) endpoints_shapes = { 'Stem': [batch_size, 32, 32, 96], 'Cell_0': [batch_size, 32, 32, 192], 'Cell_1': [batch_size, 32, 32, 192], 'Cell_2': [batch_size, 32, 32, 192], 'Cell_3': [batch_size, 32, 32, 192], 'Cell_4': [batch_size, 32, 32, 192], 'Cell_5': [batch_size, 32, 32, 192], 'Cell_6': [batch_size, 16, 16, 384], 'Cell_7': [batch_size, 16, 16, 384], 'Cell_8': [batch_size, 16, 16, 384], 'Cell_9': [batch_size, 16, 16, 384], 'Cell_10': [batch_size, 16, 16, 384], 'Cell_11': [batch_size, 16, 16, 384], 'Cell_12': [batch_size, 8, 8, 768], 'Cell_13': [batch_size, 8, 8, 768], 'Cell_14': [batch_size, 8, 8, 768], 'Cell_15': [batch_size, 8, 8, 768], 'Cell_16': [batch_size, 8, 8, 768], 'Cell_17': [batch_size, 8, 8, 768], 'Reduction_Cell_0': [batch_size, 16, 16, 256], 'Reduction_Cell_1': [batch_size, 8, 8, 512], 'global_pool': [batch_size, 768], # Logits and predictions 'AuxLogits': [batch_size, num_classes], 'Logits': [batch_size, num_classes], 'Predictions': [batch_size, num_classes] } self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys()) for endpoint_name in endpoints_shapes: tf.logging.info('Endpoint name: {}'.format(endpoint_name)) expected_shape = endpoints_shapes[endpoint_name] self.assertTrue(endpoint_name in end_points) self.assertListEqual( end_points[endpoint_name].get_shape().as_list(), expected_shape)