Пример #1
0
 def testOverrideHParamsMobileModel(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     tf.train.create_global_step()
     config = pnasnet.mobile_imagenet_config()
     config.set_hparam('data_format', 'NCHW')
     with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()):
         _, end_points = pnasnet.build_pnasnet_mobile(inputs,
                                                      num_classes,
                                                      config=config)
     self.assertListEqual(end_points['Stem'].shape.as_list(),
                          [batch_size, 135, 28, 28])
Пример #2
0
 def testNoAuxHeadMobileModel(self):
     batch_size = 5
     height, width = 224, 224
     num_classes = 1000
     for use_aux_head in (True, False):
         tf.reset_default_graph()
         inputs = tf.random_uniform((batch_size, height, width, 3))
         tf.train.create_global_step()
         config = pnasnet.mobile_imagenet_config()
         config.set_hparam('use_aux_head', int(use_aux_head))
         with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()):
             _, end_points = pnasnet.build_pnasnet_mobile(inputs,
                                                          num_classes,
                                                          config=config)
         self.assertEqual('AuxLogits' in end_points, use_aux_head)
Пример #3
0
 def testUseBoundedAcitvationMobileModel(self):
     batch_size = 1
     height, width = 224, 224
     num_classes = 1000
     for use_bounded_activation in (True, False):
         tf.reset_default_graph()
         inputs = tf.random_uniform((batch_size, height, width, 3))
         config = pnasnet.mobile_imagenet_config()
         config.set_hparam('use_bounded_activation', use_bounded_activation)
         with slim.arg_scope(pnasnet.pnasnet_mobile_arg_scope()):
             _, _ = pnasnet.build_pnasnet_mobile(inputs,
                                                 num_classes,
                                                 config=config)
         for node in tf.get_default_graph().as_graph_def().node:
             if node.op.startswith('Relu'):
                 self.assertEqual(node.op == 'Relu6',
                                  use_bounded_activation)