def run_trial_test_dist(spec_file, spec_name=False): spec = spec_util.get(spec_file, spec_name) spec = spec_util.override_spec(spec, 'test') spec_util.tick(spec, 'trial') spec['meta']['distributed'] = 'synced' spec['meta']['max_session'] = 2 trial = Trial(spec) # manually run the logic to obtain global nets for testing to ensure global net gets updated global_nets = trial.init_global_nets() # only test first network if ps.is_list(global_nets): # multiagent only test first net = list(global_nets[0].values())[0] else: net = list(global_nets.values())[0] session_metrics_list = trial.parallelize_sessions(global_nets) trial_metrics = analysis.analyze_trial(spec, session_metrics_list) trial.close() assert isinstance(trial_metrics, dict)
def run_trial_test_dist(spec_file, spec_name=False): spec = spec_util.get(spec_file, spec_name) spec = spec_util.override_test_spec(spec) info_space = InfoSpace() info_space.tick('trial') spec['meta']['distributed'] = True spec['meta']['max_session'] = 2 trial = Trial(spec, info_space) # manually run the logic to obtain global nets for testing to ensure global net gets updated global_nets = trial.init_global_nets() # only test first network if ps.is_list(global_nets): # multiagent only test first net = list(global_nets[0].values())[0] else: net = list(global_nets.values())[0] session_datas = trial.parallelize_sessions(global_nets) trial.session_data_dict = {data.index[0]: data for data in session_datas} trial_data = analysis.analyze_trial(trial) trial.close() assert isinstance(trial_data, pd.DataFrame)