Пример #1
0
            'visual': self.number_observations > 0,
        }
        return observable

    def get_observable_dim(self):
        '''Get observable dimensions'''
        observable_dim = {
            'state': self.state_space_size,
            'visual':
            'some np array shape, as opposed to what Arthur called size',
        }
        return observable_dim


# Extend Unity BrainParameters class at runtime to add BrainExt methods
util.monkey_patch(BrainParameters, BrainExt)


class OpenAIEnv:
    def __init__(self, spec, env_space, e=0):
        self.spec = spec
        util.set_attr(self, self.spec)
        self.name = self.spec['name']
        self.env_space = env_space
        self.e = e
        self.body_e = None
        self.nanflat_body_e = None  # nanflatten version of bodies
        self.body_num = None

        self.u_env = gym.make(self.name)
        self.max_timestep = self.max_timestep or self.u_env.spec.tags.get(
Пример #2
0
            'state': self.state_space_size > 0,
            'image': self.number_observations > 0,
        }
        return observable

    def get_observable_dim(self):
        '''Get observable dimensions'''
        observable_dim = {
            'state': self.state_space_size,
            'image': 'some np array shape, as opposed to what Arthur called size',
        }
        return observable_dim


# Extend Unity BrainParameters class at runtime to add BrainExt methods
util.monkey_patch(brain.BrainParameters, BrainExt)


def set_gym_space_attr(gym_space):
    '''Set missing gym space attributes for standardization'''
    if isinstance(gym_space, gym.spaces.Box):
        pass
    elif isinstance(gym_space, gym.spaces.Discrete):
        setattr(gym_space, 'low', 0)
        setattr(gym_space, 'high', gym_space.n)
    elif isinstance(gym_space, gym.spaces.MultiBinary):
        setattr(gym_space, 'low', np.full(gym_space.n, 0))
        setattr(gym_space, 'high', np.full(gym_space.n, 2))
    elif isinstance(gym_space, gym.spaces.MultiDiscrete):
        setattr(gym_space, 'low', np.zeros_like(nvec))
        setattr(gym_space, 'high', np.array(gym_space.nvec))