def test_tf2_profiler_by_time(tf2_profiler_config_parser_by_time, out_dir):
    """
    This test executes a TF2 training script, enables detailed TF profiling by time, and
    verifies the number of events.
    """
    assert tf2_profiler_config_parser_by_time.profiling_enabled

    hook = Hook(out_dir=out_dir)
    helper_keras_fit(trial_dir=out_dir,
                     hook=hook,
                     eager=True,
                     steps=["train", "eval", "predict"])
    hook.close()

    # get tensorboard timeline files
    files = []
    for path in Path(tf2_profiler_config_parser_by_time.config.local_path +
                     "/framework").rglob(f"*{TENSORBOARDTIMELINE_SUFFIX}"):
        files.append(path)

    assert len(files) == 1

    trace_file = str(files[0])
    t_events = TensorboardProfilerEvents()

    t_events.read_events_from_file(trace_file)

    all_trace_events = t_events.get_all_events()
    num_trace_events = len(all_trace_events)

    print(f"Number of events read = {num_trace_events}")

    # The number of events is varying by a small number on
    # consecutive runs. Hence, the approximation in the below asserts.
    assert num_trace_events >= 700
def helper_tensorflow_tests(use_keras, collection, save_config,
                            with_timestamp):
    coll_name, coll_regex = collection

    run_id = "trial_" + coll_name + "-" + datetime.now().strftime(
        "%Y%m%d-%H%M%S%f")
    trial_dir = os.path.join(SMDEBUG_TF_HOOK_TESTS_DIR, run_id)

    if use_keras:
        hook = TF_KerasHook(
            out_dir=trial_dir,
            include_collections=[coll_name],
            save_config=save_config,
            export_tensorboard=True,
        )

        saved_scalars = simple_tf_model(hook, with_timestamp=with_timestamp)

    else:
        hook = TF_SessionHook(
            out_dir=trial_dir,
            include_collections=[coll_name],
            save_config=save_config,
            export_tensorboard=True,
        )

        saved_scalars = tf_session_model(hook, with_timestamp=with_timestamp)
        tf.reset_default_graph()

    hook.close()
    verify_files(trial_dir, save_config, saved_scalars)
    if with_timestamp:
        check_tf_events(trial_dir, saved_scalars)
def test_tf2_profiler_by_time(tf2_profiler_config_parser_by_time, out_dir):
    """
    This test executes a TF2 training script, enables detailed TF profiling by time, and
    verifies the number of events.
    """
    assert tf2_profiler_config_parser_by_time.profiling_enabled

    hook = Hook(out_dir=out_dir)
    helper_keras_fit(trial_dir=out_dir,
                     hook=hook,
                     eager=True,
                     steps=["train", "eval", "predict"])
    hook.close()

    verify_detailed_profiling(out_dir, 700)
def helper_tensorflow_tests(use_keras, collection, save_config):
    coll_name, coll_regex = collection

    run_id = "trial_" + coll_name + "-" + datetime.now().strftime("%Y%m%d-%H%M%S%f")
    trial_dir = os.path.join(SMDEBUG_TF_HOOK_TESTS_DIR, run_id)

    if use_keras:
        hook = TF_KerasHook(
            out_dir=trial_dir,
            include_collections=[coll_name],
            save_config=save_config,
            export_tensorboard=True,
        )

        simple_tf_model(hook)

        saved_scalars = [
            "scalar/tf_keras_num_steps",
            "scalar/tf_keras_before_train",
            "scalar/tf_keras_after_train",
        ]
    else:
        hook = TF_SessionHook(
            out_dir=trial_dir,
            include_collections=[coll_name],
            save_config=save_config,
            export_tensorboard=True,
        )

        tf_session_model(hook)
        tf.reset_default_graph()

        saved_scalars = [
            "scalar/tf_session_num_steps",
            "scalar/tf_session_before_train",
            "scalar/tf_session_after_train",
        ]
    hook.close()
    verify_files(trial_dir, save_config, saved_scalars)
Пример #5
0
def helper_tensorflow_tests(collection, save_config):
    coll_name, coll_regex = collection

    run_id = "trial_" + coll_name + "-" + datetime.now().strftime(
        "%Y%m%d-%H%M%S%f")
    trial_dir = os.path.join(SMDEBUG_TF_HOOK_TESTS_DIR, run_id)

    hook = TF_Hook(out_dir=trial_dir,
                   include_collections=[coll_name],
                   export_tensorboard=True)
    coll = hook.get_collection(coll_name)
    coll.save_config = save_config
    save_steps = save_config.get_save_config(ModeKeys.TRAIN).save_steps
    if not save_steps:
        save_interval = save_config.get_save_config(
            ModeKeys.TRAIN).save_interval
        save_steps = [i for i in range(0, 10, save_interval)]

    simple_tf_model(hook)
    hook.close()

    saved_scalars = ["loss"]
    check_trials(trial_dir, save_steps, coll_name, saved_scalars)
    check_metrics_file(saved_scalars)