Пример #1
0
def checkOneAnalysis():
    import argparse
    #import IPython
    argparser = argparse.ArgumentParser(
        description='print the correlations of one specific analysis')
    argparser.add_argument(
        '-d',
        '--dbpath',
        help='specify path to database [<rundir>/database.pcl]',
        type=str,
        default="<rundir>/database.pcl")
    argparser.add_argument('-a',
                           '--analysis',
                           help='print for <analysis>',
                           type=str,
                           default="CMS-SUS-19-006")
    args = argparser.parse_args()
    from smodels.experiment.databaseObj import Database
    print("[analysisCombiner] checking %s" % args.dbpath)
    db = Database(args.dbpath)
    results = db.getExpResults()
    info = getInfoFromAnaId(args.analysis, results)
    sqrts = info.sqrts
    collaboration = getExperimentName(info)
    prettyName = info.prettyName
    if args.analysis in moreComments:
        prettyName += " (%s)" % moreComments[args.analysis]
    # IPython.embed()
    print("correlations for %s: %s" % (args.analysis, prettyName))
    combs, nocombs = set(), set()
    pnames = {}
    for er in results:
        if er.globalInfo.sqrts != sqrts:
            continue
        if getExperimentName(er.globalInfo) != collaboration:
            continue
        Id = er.globalInfo.id
        Id = Id.replace("-eff", "").replace("-agg", "")
        if Id == "CMS-SUS-19-006-2":
            Id = "CMS-SUS-19-006"
        if Id == args.analysis:
            continue
        pname = er.globalInfo.prettyName
        if Id in moreComments:
            pname += " (%s)" % moreComments[Id]
        pnames[Id] = pname
        cc = canCombine(info, er.globalInfo, "aggressive")
        # cc = canCombine ( pred, er.globalInfo )
        if cc:
            combs.add(Id)
        else:
            nocombs.add(Id)
    print("can combine with: ")
    for Id in combs:
        pname = pnames[Id]
        print(" `- %s: %s" % (Id, pname))
    print("cannot combine with: ")
    for Id in nocombs:
        pname = pnames[Id]
        print(" `- %s: %s" % (Id, pname))
Пример #2
0
def collect():
    db = Database ( "./database.pcl" ) # , force_load = "txt" )
    ers = db.getExpResults ( dataTypes = [ "upperLimit" ], onlyWithExpected=True )
    allSs = []
    for er in ers:
        txnlist = er.datasets[0].txnameList
        for txn in txnlist:
            ct=0
            origdata = eval(txn.txnameData.origdata)
            for point in origdata:
                m = point[0]
                rul = point[1]
                ul,eul=None,None
                try:
                    ul = txn.getULFor(m, False )
                    eul = txn.getULFor(m, True )
                except Exception:
                    pass
                if type(ul) == type(None) or type(eul) == type(None):
                    continue
                sigma = eul / 1.96
                S = float ( ( ul - eul ) / sigma )
                if (S < -1.8 or S > 3.5) and ct<3:
                # if S > 10. and ct<3:
                    print ( )
                    print ( "S=%.2f for ul=%s, eul=%s sigma=%s" % ( S, ul, eul, sigma ) )
                    print ( "  at ", er.globalInfo.id, txn.txName, m, "rul", rul )
                    ct += 1
                allSs.append ( S )
                # print ( "->", er.globalInfo.id, txn, S )
    print ("all", min(allSs), np.mean(allSs), max(allSs) )
    f=open("ulSs.pcl","wb")
    pickle.dump(allSs,f)
    f.close()
    sys.exit()
Пример #3
0
def getSRs():
    from smodels.experiment.databaseObj import Database
    db = Database ( "official" )
    ers = db.getExpResults( dataTypes=[ "efficiencyMap" ] )
    stats = []
    for er in ers:
        for ds in er.datasets:
            D = { "obsN": ds.dataInfo.observedN, "expectedBG": ds.dataInfo.expectedBG,
                  "bgError": ds.dataInfo.bgError, "upperLimit": ds.dataInfo.upperLimit,
                  "expectedUpperLimit": ds.dataInfo.expectedUpperLimit }
            stats.append ( D )
    return stats
Пример #4
0
def getSummary():
    from smodels.experiment.databaseObj import Database
    # dbpath = "official"
    dbpath = "<rundir>/database.pcl"
    print("[analysisCombiner] checking %s" % dbpath)
    db = Database(dbpath)
    results = db.getExpResults()
    strategy = "aggressive"
    ana1 = "CMS-SUS-16-042"
    ana2 = "CMS-SUS-16-033"
    canC = canCombine(ana1, ana2, strategy, results)
    print("[analysisCombiner] can combine %s with %s: %s" %
          (ana1, ana2, str(canC)))
    ctr, combinable = 0, 0
    for x, e in enumerate(results):
        for y, f in enumerate(results):
            if y <= x:
                continue
            ctr += 1
            isUn = canCombine(e.globalInfo, f.globalInfo, strategy)
            combinable += isUn
    print("[analysisCombiner] can combine %d/%d pairs of results" %
          (combinable, ctr))
Пример #5
0
 from smodels.theory.model import Model
 from smodels.tools.physicsUnits import fb
 model = Model(BSMparticles=BSMList, SMparticles=SMList)
 model.updateParticles(inputFile=args.slhafile)
 print("[combiner] loading database", args.database)
 db = Database(args.database)
 print("[combiner] done loading database")
 anaIds = ["CMS-SUS-16-033"]
 anaIds = ["all"]
 dts = ["all"]
 if args.upper_limits:
     dts = ["upperLimit"]
 if args.efficiencyMaps:
     dts = ["efficiencyMap"]
 listOfExpRes = db.getExpResults(analysisIDs=anaIds,
                                 dataTypes=dts,
                                 onlyWithExpected=True)
 smses = decomposer.decompose(model, .01 * fb)
 #print ( "[combiner] decomposed into %d topos" % len(smses) )
 from smodels.theory.theoryPrediction import theoryPredictionsFor
 combiner = Combiner()
 allps = []
 for expRes in listOfExpRes:
     preds = theoryPredictionsFor(expRes, smses)
     if preds == None:
         continue
     for pred in preds:
         allps.append(pred)
 combo, globalZ, llhd, muhat = combiner.findHighestSignificance(
     allps, "aggressive", expected=args.expected)
 print("[combiner] global Z is %.2f: %s (muhat=%.2f)" %
Пример #6
0
class Predictor:
    def __init__(self,
                 walkerid,
                 dbpath="./default.pcl",
                 expected=False,
                 select="all",
                 do_combine=False):
        """
        :param do_combine: if True, then also use combined results,
                           both via simplified likelihoods and pyhf.
        """
        self.walkerid = walkerid
        self.do_combine = do_combine
        self.modifier = None
        self.select = select
        self.expected = expected
        self.rthreshold = 1.3  ## threshold for rmax
        if expected:
            from expResModifier import ExpResModifier
            self.modifier = ExpResModifier()
        force_load = None
        if dbpath.endswith(".pcl"):
            force_load = "pcl"
        ntries = 0
        while not os.path.exists(dbpath):
            ## give it a few tries
            ntries += 1
            time.sleep(ntries * 5)
            if ntries > 5:
                break
        self.database = Database(dbpath, force_load=force_load)
        self.fetchResults()
        self.combiner = Combiner(self.walkerid)

    def filterForAnaIdsTopos(self, anaIds, topo):
        """ filter the list of expRes, keep only anaIds """
        keepExpRes = []
        nbefore = len(self.listOfExpRes)
        for er in self.listOfExpRes:
            eid = er.globalInfo.id
            if not eid in anaIds:
                continue
            txnames = [x.txName for x in er.getTxNames()]
            if not topo in txnames:  ## can safely skip
                continue
            newDS = []
            for dataset in er.datasets:
                newTxNames = []
                for txName in dataset.txnameList:
                    if txName.txName != topo:
                        continue
                    newTxNames.append(txName)
                if len(newTxNames) > 0:
                    dataset.txnameList = newTxNames
                    newDS.append(dataset)
            if len(newDS) > 0:
                er.datasets = newDS
                keepExpRes.append(er)
        self.pprint ( "filtered for %s, keeping %d/%d expRes" % \
                      ( topo, len(keepExpRes), nbefore) )
        self.listOfExpRes = keepExpRes

    def filterForTopos(self, topo):
        """ filter the list of expRes, keep only the ones for topo """
        keepExpRes = []
        nbefore = len(self.listOfExpRes)
        for er in self.listOfExpRes:
            txnames = [x.txName for x in er.getTxNames()]
            if not topo in txnames:  ## can safely skip
                continue
            newDS = []
            for dataset in er.datasets:
                newTxNames = []
                for txName in dataset.txnameList:
                    if txName.txName != topo:
                        continue
                    newTxNames.append(txName)
                if len(newTxNames) > 0:
                    dataset.txnameList = newTxNames
                    newDS.append(dataset)
            if len(newDS) > 0:
                er.datasets = newDS
                keepExpRes.append(er)
        self.pprint ( "filtered for %s, keeping %d/%d expRes" % \
                      ( topo, len(keepExpRes), nbefore) )
        self.listOfExpRes = keepExpRes

    def fetchResults(self):
        """ fetch the list of results, perform all selecting
            and modding """

        dataTypes = ["all"]
        if self.select == "em":
            dataTypes = ["efficiencyMap"]
        if self.select == "ul":
            dataTypes = ["upperLimit"]
        txnames = ["all"]
        if self.select.startswith("txnames:"):
            s = self.select.replace("txnames:", "")
            txnames = s.split(",")
            self.pprint("I have been asked to select txnames for %s" % s)

        listOfExpRes = self.database.getExpResults(dataTypes=dataTypes,
                                                   txnames=txnames,
                                                   useNonValidated=True)
        if self.modifier:
            listOfExpRes = self.modifier.modify(listOfExpRes)

        self.listOfExpRes = listOfExpRes
        if False:
            f = open("expresults.txt", "wt")
            for expRes in self.listOfExpRes:
                f.write("%s %s\n" % (expRes.id(), expRes.datasets[0]))
            f.close()

    def pprint(self, *args):
        """ logging """
        print("[predictor] %s" % (" ".join(map(str, args))))
        self.log(*args)

    def log(self, *args):
        """ logging to file """
        with open("walker%d.log" % self.walkerid, "a") as f:
            f.write("[predictor-%s] %s\n" %
                    (time.strftime("%H:%M:%S"), " ".join(map(str, args))))

    def predict(self,
                protomodel,
                sigmacut=0.02 * fb,
                strategy="aggressive",
                keep_predictions=False):
        """ Compute the predictions and statistical variables, for a
            protomodel.

        :param sigmacut: weight cut on the predict xsecs for theoryPredictions
        :param strategy: combination strategy, currently only aggressive is used
        :param keep_predictions: if True, then keep all predictions (in self,
               not in protomodel!!)
        :returns: False, if no combinations could be found, else True
        """

        if hasattr(self, "predictions"):
            del self.predictions  ## make sure we dont accidentally use old preds

        # Create SLHA file (for running SModelS)
        slhafile = protomodel.createSLHAFile()

        # First run SModelS using all results and considering only the best signal region.
        # thats the run for the critic
        bestpreds = self.runSModelS(slhafile,
                                    sigmacut,
                                    allpreds=False,
                                    llhdonly=False)

        if keep_predictions:
            self.bestpreds = bestpreds
        # Extract the relevant prediction information and store in the protomodel:
        self.updateModelPredictions(protomodel, bestpreds)
        # self.log ( "model is excluded? %s" % str(protomodel.excluded) )

        # Compute the maximum allowed (global) mu value given the r-values
        # stored in protomodel
        protomodel.mumax = self.getMaxAllowedMu(protomodel)

        # now use all prediction with likelihood values to compute the Z of the model
        predictions = self.runSModelS(slhafile,
                                      sigmacut,
                                      allpreds=True,
                                      llhdonly=True)

        if keep_predictions:
            self.predictions = predictions

        # Compute significance and store in the model:
        self.computeSignificance(protomodel, predictions, strategy)
        if protomodel.Z is None:
            self.log(
                "done with prediction. Could not find combinations (Z=%s)" %
                (protomodel.Z))
            protomodel.delCurrentSLHA()
            return False
        else:
            self.log("done with prediction. best Z=%.2f (muhat=%.2f)" %
                     (protomodel.Z, protomodel.muhat))

        protomodel.cleanBestCombo()

        #Recompute predictions with higher accuracy for high score models:
        if protomodel.Z > 2.7 and protomodel.nevents < 55000:
            protomodel.nevents = 100000
            protomodel.computeXSecs()
            self.predict(protomodel, sigmacut=sigmacut, strategy=strategy)

        protomodel.delCurrentSLHA()
        return True

    def runSModelS(self, inputFile, sigmacut, allpreds, llhdonly):
        """ run smodels proper.
        :param inputFile: the input slha file
        :param sigmacut: the cut on the topology weights, typically 0.02*fb
        :param allpreds: if true, return all predictions of analyses, else
                         only best signal region
        :param llhdonly: if true, return only results with likelihoods
        """

        if not os.path.exists(inputFile):
            self.pprint("error, cannot find inputFile %s" % inputFile)
            return []
        model = Model(BSMList, SMList)
        model.updateParticles(inputFile=inputFile)

        mingap = 10 * GeV

        # self.log ( "Now decomposing" )
        topos = decomposer.decompose(model, sigmacut, minmassgap=mingap)
        self.log("decomposed model into %d topologies." % len(topos))

        if allpreds:
            bestDataSet = False
            combinedRes = False
        else:
            bestDataSet = True
            combinedRes = self.do_combine

        preds = []
        # self.log ( "start getting preds" )
        from smodels.tools import runtime
        runtime._experimental = True
        for expRes in self.listOfExpRes:
            predictions = theoryPredictionsFor(expRes,
                                               topos,
                                               useBestDataset=bestDataSet,
                                               combinedResults=combinedRes)
            if predictions == None:
                predictions = []
            if allpreds:
                combpreds = theoryPredictionsFor(
                    expRes,
                    topos,
                    useBestDataset=False,
                    combinedResults=self.do_combine)
                if combpreds != None:
                    for c in combpreds:
                        predictions.append(c)
            for prediction in predictions:
                prediction.computeStatistics()
                if (not llhdonly) or (prediction.likelihood != None):
                    preds.append(prediction)
        sap = "best preds"
        if allpreds:
            sap = "all preds"
        sllhd = ""
        if llhdonly:
            sllhd = ", llhds only"
        self.log ( "returning %d predictions, %s%s" % \
                   (len(preds),sap, sllhd ) )
        return preds

    def printPredictions(self):
        """ if self.predictions exists, pretty print them """
        if hasattr(self, "predictions"):
            print("[predictor] all predictions (for combiner):")
            for p in self.predictions:
                print ( " - %s %s, %s %s" % \
                        ( p.analysisId(), p.dataType(), p.dataset.dataInfo.dataId, p.txnames ) )
        if hasattr(self, "bestpreds"):
            print("[predictor] best SR predictions (for critic):")
            for p in self.bestpreds:
                print ( " - %s %s, %s %s" % \
                        ( p.analysisId(), p.dataType(), p.dataset.dataInfo.dataId, p.txnames ) )

    def updateModelPredictions(self, protomodel, predictions):
        """ Extract information from list of theory predictions and store in the protomodel.
        :param predictions: all theory predictions
        :returns: list of tuples with observed r values, r expected and
                  theory prediction info (sorted with highest r-value first)
        """

        rvalues = []  #If there are no predictions set rmax and r2 to 0
        tpList = []
        for theorypred in predictions:
            r = theorypred.getRValue(expected=False)
            if r == None:
                self.pprint("I received %s as r. What do I do with this?" % r)
                r = 23.
            rexp = theorypred.getRValue(expected=True)
            # tpList.append( (r, rexp, self.combiner.removeDataFromTheoryPred ( theorypred ) ) )
            tpList.append((r, rexp, theorypred))
            rvalues.append(r)
        while len(rvalues) < 2:
            rvalues.append(0.)
        rvalues.sort(reverse=True)
        srs = "%s" % ", ".join(["%.2f" % x for x in rvalues[:3]])
        self.log("top r values before rescaling are: %s" % srs)
        protomodel.rvalues = rvalues  #Do not include initial zero values
        # protomodel.excluded = protomodel.rvalues[0] > self.rthreshold #The 0.99 deals with the case rmax = threshold
        protomodel.tpList = tpList[:]

    def getMaxAllowedMu(self, protomodel):
        """ Compute the maximum (global) signal strength normalization
            given the predictions.
        """

        mumax = float("inf")
        if protomodel.rvalues[0] > 0.:
            #Set mumax slightly below threshold, so the model is never excluded
            mumax = 0.999 * self.rthreshold / protomodel.rvalues[0]

        return mumax

    def computeSignificance(self, protomodel, predictions, strategy):
        """ compute the K and Z values, and attach them to the protomodel """

        self.log("now find highest significance for %d predictions" %
                 len(predictions))
        ## find highest observed significance
        #(set mumax just slightly below its value, so muhat is always below)
        mumax = protomodel.mumax
        combiner = self.combiner
        bestCombo, Z, llhd, muhat = combiner.findHighestSignificance(
            predictions, strategy, expected=False, mumax=mumax)
        prior = combiner.computePrior(protomodel)
        if hasattr(protomodel, "keep_meta") and protomodel.keep_meta:
            protomodel.bestCombo = bestCombo
        else:
            protomodel.bestCombo = combiner.removeDataFromBestCombo(bestCombo)
        protomodel.Z = Z

        if Z is not None:  # Z is None when no combination was found
            protomodel.K = combiner.computeK(Z, prior)
        else:
            protomodel.K = None
        protomodel.llhd = llhd
        protomodel.muhat = muhat
        protomodel.letters = combiner.getLetterCode(protomodel.bestCombo)
        protomodel.description = combiner.getComboDescription(
            protomodel.bestCombo)
Пример #7
0
class LlhdPlot:
    """ A simple class to make debugging the plots easier """
    def __init__ ( self, pid1, pid2, verbose, copy, max_anas, 
                   interactive, drawtimestamp, compress, rundir,
                   upload ):
        """
        :param pid1: pid for x axis, possibly a range of pids
        :param pid2: pid for y axis
        :param verbose: verbosity (debug, info, warn, or error)
        :param copy: copy plot to ../../smodels.github.io/protomodels/latest
        :param max_anas: maximum number of analyses on summary plot
        :param interactive: prepare for an interactive session?
        :param drawtimestamp: if true, put a timestamp on plot
        :param compress: prepare for compression
        :param upload: upload directory, default is "latest"
        """
        self.rundir = rundir
        self.upload = upload
        self.setup( pid1, pid2 )
        self.DEBUG, self.INFO = 40, 30
        self.drawtimestamp = drawtimestamp
        self.max_anas = max_anas ## maximum number of analyses
        self.copy = copy
        self.rthreshold = 1.7
        self.interactive = interactive
        self.hiscorefile = "./hiscore.hi"
        if rundir != None:
            self.hiscorefile = f"{rundir}/hiscore.hi"
        self.setVerbosity ( verbose )
        masspoints,mx,my,nevents,topo,timestamp = self.loadPickleFile( compress )
        self.masspoints = masspoints
        self.mx = mx
        self.my = my
        self.nevents = nevents
        self.topo = topo
        self.timestamp = timestamp
        self.massdict = {}
        self.rdict = {}
        if masspoints == None:
            return
        for m in masspoints:
            self.massdict[ (m[0],m[1]) ] = m[2]
            if len(m)>3:
                self.rdict[ (m[0],m[1]) ] = m[3]

    def setVerbosity ( self, verbose ):
        self.verbose = verbose
        if type(verbose)==str:
            verbose = verbose.lower()
            if "deb" in verbose:
                self.verbose = 40
                return
            if "inf" in verbose:
                self.verbose = 30
                return
            if "warn" in verbose:
                self.verbose = 20
                return
            if "err" in verbose:
                self.verbose = 10
                return
            self.pprint ( "I dont understand verbosity ``%s''. Setting to debug." % verbose )
            self.verbose = 40

    def getHash ( self, m1=None, m2=None ):
        """ get hash for point. if None, get hash for self.mx, self.my """
        if m1 == None:
            m1 = self.mx
        if m2 == None:
            m2 = self.my
        return int(1e3*m1) + int(1e0*m2)

    def getResultFor ( self, ana, masspoint ):
        """ return result for ana/topo pair 
        :param ana: the analysis id. optionally a data type can be specificed, e.g.
                    as :em. Alternatively, a signal region can be specified.
        :param masspoint: a point from self.masspoints
        :returns: results for this analysis (possibly data type, possibly signal region) 
                  and topology
        """
        #self.pprint ( "asking for %s" % ana )
        ret,sr = None, None
        dType = "any"
        if ":" in ana:
            ana,dType = ana.split(":")
        for k,v in masspoint.items():
            tokens = k.split(":")
            if dType == "ul" and tokens[1] != "None":
                continue
            if dType == "em" and tokens[1] == "None":
                continue
            if ana != tokens[0]:
                continue
            # self.pprint ( "asking for %s, %s %s" % ( tokens[0], tokens[1], dType ) )
            if tokens[1] != None and dType not in [ "any", "ul", "None" ]:
                # if signal regions are given, they need to match
                if tokens[1] != dType:
                    continue
                self.debug ( "found a match for", tokens[0], tokens[1], v )
            if self.topo not in tokens[2]:
                continue
            if ret == None or v > ret:
                ret = v
                sr = tokens[1]
        return ret,sr

    def loadPickleFile ( self, returnAll=False ):
        """ load dictionary from picklefile 
        :param returnAll: return all likelihoods info
        """
        topo, timestamp = "?", "?"
        allhds = None
        with open ( self.picklefile, "rb" ) as f:
            try:
                allhds = pickle.load ( f )
                mx = pickle.load ( f )
                my = pickle.load ( f )
                nevents = pickle.load ( f )
                topo = pickle.load ( f )
                timestamp = pickle.load ( f )
            except EOFError as e:
                print ( "[plotLlhds] EOF error %s, when reading %s" % \
                        ( e, self.picklefile ) )
            f.close()
        if allhds == None:
            print ( "couldnt read llhds in %s" % self.picklefile )
            return None,None,None,None,None,None
        if returnAll:
            return allhds,mx,my,nevents,topo,timestamp
        llhds=[]
        mu = 1.
        def getMu1 ( L ):
            for k,v in L.items():
                if abs(k-mu)<1e-9:
                    return v
            print ( "couldnt find anything" )
            return None
        for llhd in allhds:
            if self.pid1 in [ 1000001, 1000002, 1000003, 1000004 ]:
                if llhd[0]<310.:
                    print ( "light squark mass wall, skipping mx %d < 310 GeV" % llhd[0] )
                    continue
            if len(llhd)==4:
                llhds.append ( (llhd[0],llhd[1],getMu1(llhd[2]),llhd[3]) )
            else:
                llhds.append ( (llhd[0],llhd[1],getMu1(llhd[2]),[0.,0.,0.]) )
        return llhds,mx,my,nevents,topo,timestamp

    def pprint ( self, *args ):
        print ( "[plotLlhds] %s" % " ".join(map(str,args)) )  

    def debug ( self, *args ):
        if self.verbose >= self.DEBUG:
            print ( "[plotLlhds] %s" % " ".join(map(str,args)) )  

    def setup ( self, pid1, pid2 ):
        """ setup rundir, picklefile path and hiscore file path """
        self.hiscorefile = self.rundir + "/hiscore.hi"
        if not os.path.exists ( self.hiscorefile ):
            self.pprint ( "could not find hiscore file %s" % self.hiscorefile )
 
        self.pid1 = pid1
        self.pid2 = pid2
        if type(self.pid1) in [ tuple, list ]:
            pid1 = self.pid1[0]
        self.picklefile = "%s/llhd%d%d.pcl" % ( self.rundir, pid1, self.pid2 )
        if not os.path.exists ( self.picklefile ):
            llhdp = self.picklefile
            self.picklefile = "%s/mp%d%d.pcl" % ( self.rundir, pid1, self.pid2 )
        if not os.path.exists ( self.picklefile ):
            self.pprint ( "could not find pickle files %s and %s" % \
                          ( llhdp, self.picklefile ) )

    def describe ( self ):
        """ describe the situation """
        print ( "%d masspoints obtained from %s, hiscore stored in %s" % \
                ( len ( self.masspoints), self.picklefile, self.hiscorefile ) )
        print ( "Data members: plot.masspoints, plot.massdict, plot.timestamp, plot.mx, plot.my" )
        print ( "              plot.pid1, plot.pid2, plot.topo" )
        print ( "Function members: plot.findClosestPoint()" )


    def getLClosestTo ( self, L, mx=None, my=None ):
        """ get the L closest to your point """
        if mx == None:
            mx=self.mx
        if my == None:
            my=self.my
        def distance_ ( k, mx, my ):
            _x = int(math.floor(k/1000.))
            _y = int(math.floor(k % 1000 ) )
            ret= (mx - _x)**2 + (my - _y)**2
            return ret

        dmmin, vmin = float("inf"), 23.
        for k,v in L.items():
            dm = distance_ ( k, mx, my )
            if dm < dmmin and not np.isnan(v):
                dmmin = dmmin
                vmin = v
        return vmin

    def getPrettyName ( self, anaid ):
        """ get pretty name of ana id """
        if False: ## set to true and we have the old analysis Ids
            return anaid
        if not hasattr ( self, "database" ):
            from smodels.experiment.databaseObj import Database
            dbname = "./original.pcl" 
            dbname = "/home/walten/git/smodels-database"
            dbname = "/scratch-cbe/users/wolfgan.waltenberger/rundir/db31.pcl"
            self.database = Database ( dbname )
        from smodels_utils.helper.prettyDescriptions import prettyTexAnalysisName
        if ":" in anaid:
            anaid = anaid[:anaid.find(":")]
        ers = self.database.getExpResults ( analysisIDs = [ anaid ] )
        for er in ers:
           if hasattr ( er.globalInfo, "prettyName" ):
              pn = er.globalInfo.prettyName
              sqrts = er.globalInfo.sqrts.asNumber(TeV)
              ret = prettyTexAnalysisName ( pn, sqrts, dropEtmiss = True,
                                        collaboration = True, anaid = er.globalInfo.id )
              # for the 2020 paper to be consistent
              ret = ret.replace( "+ top tag", "stop" )
              ret = ret.replace( "+ 4 (1 b-)jets", "multijet" )
              # ret += " -> " + anaid
              return ret
        # print ( "found no pretty name", ers[0].globalInfo )
        return anaid

    def plot ( self, ulSeparately=True, pid1=None ):
        """ a summary plot, overlaying all contributing analyses 
        :param ulSeparately: if true, then plot UL results on their own
        """
        if pid1 == None and type(self.pid1) in [ list, tuple ]:
            for p in self.pid1:
                self.plot ( ulSeparately, p )
            return
        if type(pid1) in [ tuple, list ]:
            for p in pid1:
                self.plot ( ulSeparately, p )
            return
        if pid1 == None:
            pid1 = self.pid1
        self.pprint ( "plotting summary for %s, %s" % ( pid1, self.topo ) )
        resultsForPIDs = {}
        from plotting.plotHiscore import getPIDsOfTPred, obtain
        protomodel = obtain ( 0, self.hiscorefile )
        for tpred in protomodel.bestCombo:
            resultsForPIDs = getPIDsOfTPred ( tpred, resultsForPIDs, integrateSRs=False )
        stats = self.getAnaStats( integrateSRs=False )
        if stats == None:
            self.pprint ( "found no ana stats?" )
            return
        anas = list(stats.keys())
        if pid1 in resultsForPIDs:
            self.debug ( "results for PIDs %s" % ", ".join ( resultsForPIDs[pid1] ) )
            anas = list ( resultsForPIDs[pid1] )
        anas.sort()
        self.pprint ( "summary plot: %s" % ", ".join ( anas ) )
        # print ( stats.keys() )
        colors = [ "red", "green", "blue", "orange", "cyan", "magenta", "grey", "brown",
                   "pink", "indigo", "olive", "orchid", "darkseagreen", "teal" ]
        xmin,xmax,ymin,ymax=9000,0,9000,0
        for m in self.masspoints:
            if m[0] < xmin:
                xmin = m[0]
            if m[0] > xmax:
                xmax = m[0]
            if m[1] < ymin:
                ymin = m[1]
            if m[1] > ymax:
                ymax = m[1]
        if abs(xmin-310.)<1e-5:
            xmin=330. ## cut off the left margin
        print ( "[plotLlhds] range x [%d,%d] y [%d,%d]" % ( xmin, xmax, ymin, ymax ) )
        handles = []
        existingPoints = []
        combL = {}
        namer = SParticleNames ( susy = False )
        for ctr,ana in enumerate ( anas ): ## loop over the analyses
            if ctr >= self.max_anas:
                self.pprint ( "too many (%d > %d) analyses." % (len(anas),self.max_anas) )
                for ana in anas[ctr:]:
                    self.pprint ( "  - skipping %s" % ana )
                break
            color = colors[ctr]
            x,y=set(),set()
            L, R = {}, {}
            minXY=( 0.,0., float("inf") )
            s=""
            r,sr = self.getResultFor ( ana, self.masspoints[0][2] )
            if r:
                s="(%.2f)" % (-np.log(r))
            print ( "[plotLlhds] result for", ana,"is", s )
            cresults = 0
            for cm,masspoint in enumerate(self.masspoints[1:]):
                #if cm % 10 != 0:
                #    continue
                if cm % 1000 == 0:
                    print ( ".", end="", flush=True )
                m1,m2,llhds,robs=masspoint[0],masspoint[1],masspoint[2],masspoint[3]
                rmax=float("nan")
                if len(robs)>0:
                    rmax=robs[0]
                if m2 > m1:
                    print ( "m2,m1 mass inversion?",m1,m2 )
                x.add ( m1 )
                y.add ( m2 )
                zt = float("nan")
                result,sr = self.getResultFor ( ana, llhds )
                if result:
                    zt = - np.log( result )
                    cresults += 1
                    if zt < minXY[2] and rmax<=self.rthreshold:
                        minXY=(m1,m2,zt)
                h = self.getHash(m1,m2)
                L[h]=zt
                if not h in combL:
                    combL[h]=0.
                if np.isnan(zt):
                    combL[h] = combL[h] + 100.
                else:
                    combL[h] = combL[h] + zt
                R[h]=rmax
            print ()
            # print ( "\n[plotLlhds] min(xy) for %s is at m=(%d/%d): %.2f(%.2g)" % ( ana, minXY[0], minXY[1], minXY[2], np.exp(-minXY[2] ) ) )
            if cresults == 0:
                print ( "[plotLlhds] warning: found no results for %s. skip" % \
                        str(masspoint) )
                continue
                # return
            x.add ( xmax*1.03 )
            x.add ( xmin*.93 )
            y.add ( ymax+50. )
            y.add ( 0. )
            x,y=list(x),list(y)
            x.sort(); y.sort()
            X, Y = np.meshgrid ( x, y )
            Z = float("nan")*X
            RMAX = float("nan")*X
            for irow,row in enumerate(Z):
                for icol,col in enumerate(row):
                    h = 0
                    if len(x)>= icol and len(y) >= irow:
                        h = self.getHash(list(x)[icol],list(y)[irow])
                    if h in L:
                        Z[irow,icol]=L[h]
                    if h in R:
                        RMAX[irow,icol]=R[h]
            if self.interactive:
                self.RMAX = RMAX
                # self.ZCOMB = ZCOMB
                self.Z = Z
                self.L = L
                self.R = R
                self.X = X
                self.Y = Y
            hldZ100 = computeHPD ( Z, None, 1., False, rthreshold=self.rthreshold )
            cont100 = plt.contour ( X, Y, hldZ100, levels=[0.25], colors = [ color ], linestyles = [ "dotted" ], zorder=10 )
            #hldZ95 = computeHPD ( Z, .95, False )
            #cont95 = plt.contour ( X, Y, hldZ95, levels=[0.5], colors = [ color ], linestyles = [ "dashed" ] )
            #plt.clabel ( cont95, fmt="95%.0s" )
            hldZ50 = computeHPD ( Z, RMAX, .68, False, rthreshold=self.rthreshold )
            cont50c = plt.contour ( X, Y, hldZ50, levels=[1.0], colors = [ color ], zorder=10 )
            cont50 = plt.contourf ( X, Y, hldZ50, levels=[1.,10.], colors = [ color, color ], alpha=getAlpha( color ), zorder=10 )
            plt.clabel ( cont50c, fmt="68%.0s" )
            if hasattr ( cont50, "axes" ):
                ax = cont50.axes
            else:
                ax = cont50.ax
            while isCloseToExisting ( minXY, existingPoints ):
                minXY = ( minXY[0]+8., minXY[1]+8., minXY[2] )
            a = ax.scatter( [ minXY[0] ], [ minXY[1] ], marker="*", s=180, color="black", zorder=20 )
            anan = ana.replace(":None",":UL") # + " (%.2f)" % (minXY[2])
            label = self.getPrettyName ( ana )
            a = ax.scatter( [ minXY[0] ], [ minXY[1] ], marker="*", s=110, color=color, 
                            label=label, alpha=1., zorder=20 )
            existingPoints.append ( minXY )
            handles.append ( a )
        ZCOMB = float("nan")*X
        for irow,row in enumerate(Z):
            for icol,col in enumerate(row):
                h = 0
                if len(x)> icol and len(y) > irow:
                    h = self.getHash(list(x)[icol],list(y)[irow])
                if h in combL and not np.isnan(combL[h]):
                    ZCOMB[irow,icol]=combL[h]
                    if combL[h]==0.:
                        ZCOMB[irow,icol]=float("nan")
        self.ZCOMB = ZCOMB
        contRMAX = plt.contour ( X, Y, RMAX, levels=[self.rthreshold], colors = [ "gray" ], zorder=10 )
        contRMAXf = plt.contourf ( X, Y, RMAX, levels=[self.rthreshold,float("inf")], colors = [ "gray" ], hatches = ['////'], alpha=getAlpha( "gray" ), zorder=10 )
        hldZcomb68 = computeHPD ( ZCOMB, RMAX, .68, False, rthreshold=self.rthreshold )
        contZCOMB = plt.contour ( X, Y, hldZcomb68, levels=[.25], colors = [ "black" ], zorder=10 )

        # ax.scatter( [ minXY[0] ], [ minXY[1] ], marker="s", s=110, color="gray", label="excluded", alpha=.3, zorder=20 )
        print()
        self.pprint ( "timestamp:", self.timestamp, self.topo, max(x) )
        dx,dy = max(x)-min(x),max(y)-min(y)
        if self.drawtimestamp:
            plt.text( max(x)-.37*dx,min(y)-.11*dy,self.timestamp, c="gray" )
        ### the altitude of the alpha quantile is l(nuhat) - .5 chi^2_(1-alpha);ndf
        ### so for alpha=0.05%, ndf=1 the dl is .5 * 3.841 = 1.9207
        ### for ndf=2 the dl is ln(alpha) = .5 * 5.99146 = 2.995732
        ### folien slide 317
        if hasattr ( cont50, "axes" ):
            ax = cont50.axes
        else:
            ax = cont50.ax
        # Xs,Ys=X,Y
        Xs,Ys = filterSmaller ( X, Y )
        h = self.getHash()
        # print ( "hash is", h )
        #s=" (??)"
        #if h in L:
        #    s=" (%.2f)" % L[h]
        #s=" (%.2f)" % self.getLClosestTo ( L )
        s=""
        ax.scatter( [ self.mx ], [ self.my ], marker="*", s=200, color="white", zorder=20 )
        c = ax.scatter( [ self.mx ], [ self.my ], marker="*", s=160, color="black", 
                      label="proto-model%s" % s, zorder=20 )
        handles.append ( c )
        if sr == None:
            sr = "UL"
        # plt.title ( "HPD regions, %s [%s]" % ( namer.texName(pid1, addSign=False, addDollars=True), self.topo ), fontsize=14 )
        plt.xlabel ( "m(%s) [GeV]" % namer.texName(pid1,addSign=False, addDollars=True), fontsize=14 )
        plt.ylabel ( "m(%s) [GeV]" % namer.texName(self.pid2, addSign=False, addDollars=True), fontsize=14 )
        circ1 = mpatches.Patch( facecolor="gray",alpha=getAlpha("gray"),hatch=r'////',label='excluded by critic', edgecolor="black" )
        handles.append ( circ1 )
        plt.legend( handles=handles, loc="upper left", fontsize=12 )
        figname = "%s/llhd%d.png" % ( self.rundir, pid1 )
        self.pprint ( "saving to %s" % figname )
        plt.savefig ( figname )
        if self.interactive:
            self.axes = ax
            self.plt = plt
        plt.close()
        if self.copy:
            self.copyFile ( figname )
        return

    def copyFile ( self, filename ):
        """ copy filename to smodels.github.io/protomodels/<upload>/ """
        dest = os.path.expanduser ( "~/git/smodels.github.io" )
        cmd = "cp %s %s/protomodels/%s/" % ( filename, dest, self.upload )
        o = subprocess.getoutput ( cmd )
        self.pprint ( "%s: %s" % ( cmd, o ) )


    def getAnaStats ( self, integrateSRs=True, integrateTopos=True,
                      integrateDataType=True  ):
        """ given the likelihood dictionaries D, get
            stats of which analysis occurs how often 
        :param integrateTopos: sum over all topologies
        :param integrateSRs: sum over all signal regions
        :param integrateDataType: ignore data type
        """
        anas = {}
        if self.masspoints == None:
            return None
        for masspoint in self.masspoints:
            m1,m2,llhds=masspoint[0],masspoint[1],masspoint[2]
            if len(masspoint)>3:
                robs = masspoint[3]
            for k,v in llhds.items():
                tokens = k.split(":")
                if not integrateTopos and self.topo not in tokens[2]:
                    continue
                dType = ":em"
                if tokens[1] in [ "None", None ]:
                    dType = ":ul"
                name = tokens[0]
                if not integrateDataType:
                    name = name + dType
                if not integrateTopos:
                    name = tokens[0]+tokens[1]
                if not name in anas.keys():
                    anas[name]=0
                anas[name]=anas[name]+1
        return anas

    def listAnalyses( self ):
        """
        :param verbose: verbosity: debug, info, warn, or error
        """
        stats = self.getAnaStats( integrateDataType=False )
        print ( "%6d masspoints with %s" % ( len(self.masspoints), self.topo ) )
        for k,v in stats.items():
            print ( "%6d: %s" % ( v, k ) )

    def compress ( self ):
        """ produce a pcl file with only a fraction of the points. 
            good for testing and development """
        backupfile = self.picklefile.replace(".pcl",".bu.pcl")
        subprocess.getoutput ( "cp %s %s" % ( self.picklefile, backupfile ))
        newfile = self.picklefile.replace(".pcl",".comp.pcl")
        mx,my=set(),set()
        for m in self.masspoints:
            mx.add ( m[0] )
            my.add ( m[1] )
        mx=list(mx)
        my=list(my)

        with open ( newfile, "wb" ) as f:
            mps = []
            for i,m in enumerate(self.masspoints):
                if mx.index (m[0] ) % 2 == 0 and \
                   my.index (m[1] ) % 2 == 0:
                # if i % 5 == 0:
                    mps.append ( m )
            pickle.dump ( mps, f )
            pickle.dump ( self.mx, f )
            pickle.dump ( self.my, f )
            pickle.dump ( self.nevents, f )
            pickle.dump ( self.topo, f )
            pickle.dump ( self.timestamp, f )
            f.close()

    def findClosestPoint ( self, m1=None, m2=None, nll=False ):
        """ find the mass point closest to m1, m2. If not specified, 
            return the hiscore point.
        :param nll: if True, report nlls, else report likelihoods.
        """
        if m1 == None:
            m1 = self.mx
        if m2 == None:
            m2 = self.my
        dm,point = float("inf"),None
        def distance ( m ):
            return (m[0]-m1)**2 + (m[1]-m2)**2

        for m in self.masspoints:
            tmp = distance(m)
            if tmp < dm:
                dm = tmp
                point = m
        if not nll:
            return point
        # asked for NLLs
        D = {}
        for k,v in point[2].items():
            D[k]=-np.log(v)
        return ( point[0], point[1], D )

    def interact ( self ):
        import IPython
        varis = "plot.describe()"
        print ( "%s[plot] interactive session. Try: %s%s" % \
                ( colorama.Fore.GREEN, varis, colorama.Fore.RESET ) )
        IPython.embed( using=False )
Пример #8
0
# In[3]:

## Load the database:
databasePath = os.path.join(os.getenv("HOME"), "smodels-database/")
db = Database(databasePath)

# ## Look up upper limit for an Upper Limit-type result:

# In[4]:

#Select desired result:
resultID = ["CMS-PAS-SUS-13-016"]
txname = ["T1tttt"]
expResult = db.getExpResults(analysisIDs=resultID,
                             txnames=txname,
                             dataTypes='upperLimit')[0]
print 'selected result:', expResult

# In[5]:

#Define the desired mass vector (must be consistent with the txname/simplified model):
masses = [[500 * GeV, 150 * GeV], [500 * GeV, 150 * GeV]]
print 'UL for mass\n', masses, ' is: ', expResult.getUpperLimitFor(
    mass=masses, txname="T1tttt")

# ## Look up upper limit for an Efficiency Map-type result:

# In[6]:

#Select desired result:
Пример #9
0
#!/usr/bin/env python3
""" just test that the fake signal gets injected in the right part of the UL maps """

import math
from smodels.experiment.databaseObj import Database
from smodels.tools.physicsUnits import GeV

# ./ptools/fetchFromClip.py -R rundir.frozen1 --database
db = Database("default.pcl")
print("db", db.databaseVersion)
er = db.getExpResults(["CMS-SUS-19-006"])[0]
ds = er.datasets[0]
print(ds.txnameList)
txn = ds.txnameList[6]
print(txn)


def distance(mass):
    # return math.sqrt ( (mass[0] - 735.)**2 + (mass[1]-162.6)**2  )
    return math.sqrt((mass[0] - 1166.)**2 + (mass[1] - 162.6)**2)


masses = []
for mLSP in range(100, 240, 50):
    for msquark in range(850, 1300, 50):
        masses.append([msquark, mLSP])
        # masses.append (  [[msquark*GeV,mLSP*GeV],[msquark*GeV,mLSP*GeV]] )
for mass in masses:
    mvec = [[mass[0] * GeV, mass[1] * GeV], [mass[0] * GeV, mass[1] * GeV]]
    oUL = txn.getULFor(mvec, expected=False)
    eUL = txn.getULFor(mvec, expected=True)
Пример #10
0
    def RunSModelS(self,SLHAFilePath,SummaryFilePath):
        # Set the path to the database
        database = Database("/home/oo1m20/softwares/smodels-1.2.2/smodels-database")

        self.SummaryFilePath = os.path.abspath(SummaryFilePath)

        #Define your model (list of rEven and rOdd particles)
        particlesLoader.load( 'smodels.share.models.secumssm' ) #Make sure all the model particles are up-to-date
    
        # Path to input file (either a SLHA or LHE file)
        self.SLHAFilePath = SLHAFilePath
        slhafile = self.SLHAFilePath
        #lhefile = 'inputFiles/lhe/gluino_squarks.lhe'

        # Set main options for decomposition
        sigmacut = 0.01 * fb
        mingap = 5. * GeV

    
        # Decompose model (use slhaDecomposer for SLHA input or lheDecomposer for LHE input)
        slhaInput = True
        if slhaInput:
            toplist = slhaDecomposer.decompose(slhafile, sigmacut, doCompress=True, doInvisible=True, minmassgap=mingap)
        else:
            toplist = lheDecomposer.decompose(lhefile, doCompress=True,doInvisible=True, minmassgap=mingap)
        # Access basic information from decomposition, using the topology list and topology objects:
        f= open(self.SummaryFilePath,"a+")
        print( "\n Decomposition Results: ", file=f )
        print( "\t  Total number of topologies: %i " %len(toplist), file=f )
        nel = sum([len(top.elementList) for top in toplist])
        print( "\t  Total number of elements = %i " %nel , file=f)
        #Print information about the m-th topology (if it exists):
        m = 2
        if len(toplist) > m:
            top = toplist[m]
            print( "\t\t %i-th topology  = " %m,top,"with total cross section =",top.getTotalWeight(), file=f )
            #Print information about the n-th element in the m-th topology:
            n = 0
            el = top.elementList[n]
            print( "\t\t %i-th element from %i-th topology  = " %(n,m),el, end="", file=f )
            print( "\n\t\t\twith final states =",el.getFinalStates(),"\n\t\t\twith cross section =",el.weight,"\n\t\t\tand masses = ",el.getMasses(), file=f )
            
        # Load the experimental results to be used.
        # In this case, all results are employed.
        listOfExpRes = database.getExpResults()

        # Print basic information about the results loaded.
        # Count the number of loaded UL and EM experimental results:
        nUL, nEM = 0, 0
        for exp in listOfExpRes:
            expType = exp.getValuesFor('dataType')[0]
            if expType == 'upperLimit':
                nUL += 1
            elif  expType == 'efficiencyMap':
                nEM += 1
        print( "\n Loaded Database with %i UL results and %i EM results " %(nUL,nEM), file=f )

        # Compute the theory predictions for each experimental result and print them:
        print("\n Theory Predictions and Constraints:", file=f)
        rmax = 0.
        bestResult = None
        for expResult in listOfExpRes:
            predictions = theoryPredictionsFor(expResult, toplist, combinedResults=False, marginalize=False)
            if not predictions: continue # Skip if there are no constraints from this result
            print('\n %s ' %expResult.globalInfo.id, file=f)
            for theoryPrediction in predictions:
                dataset = theoryPrediction.dataset
                datasetID = dataset.dataInfo.dataId            
                mass = theoryPrediction.mass
                txnames = [str(txname) for txname in theoryPrediction.txnames]
                PIDs =  theoryPrediction.PIDs         
                print( "------------------------", file=f )
                print( "Dataset = ", datasetID, file=f )   #Analysis name
                print( "TxNames = ", txnames, file=f )  
                print( "Prediction Mass = ",mass, file=f )   #Value for average cluster mass (average mass of the elements in cluster)
                print( "Prediction PIDs = ",PIDs, file=f )   #Value for average cluster mass (average mass of the elements in cluster)
                print( "Theory Prediction = ",theoryPrediction.xsection, file=f )  #Signal cross section
                print( "Condition Violation = ",theoryPrediction.conditions, file=f ) #Condition violation values
              
                # Get the corresponding upper limit:
                print( "UL for theory prediction = ",theoryPrediction.upperLimit, file=f )

                # Compute the r-value
                r = theoryPrediction.getRValue()
                print( "r = ",r , file=f)
                #Compute likelihhod and chi^2 for EM-type results:
                if dataset.dataInfo.dataType == 'efficiencyMap':
                    theoryPrediction.computeStatistics()
                    print( 'Chi2, likelihood=', theoryPrediction.chi2, theoryPrediction.likelihood, file=f )
                if r > rmax:
                    rmax = r
                    bestResult = expResult.globalInfo.id

        # Print the most constraining experimental result
        print( "\nThe largest r-value (theory/upper limit ratio) is ",rmax, file=f )
        if rmax > 1.:
            print( "(The input model is likely excluded by %s)" %bestResult, file=f )
        else:
            print( "(The input model is not excluded by the simplified model results)", file=f )

        f.close()
Пример #11
0
from smodels.tools.physicsUnits import fb, GeV
from smodels.theory.theoryPrediction import theoryPredictionsFor
from smodels.experiment.databaseObj import Database

# In[3]:

#Define the SLHA input file name
filename = "%s/inputFiles/slha/gluino_squarks.slha" % installDirectory()

# In[4]:

#Load the database, do the decomposition and compute theory predictions:
#(Look at the theory predictions HowTo to learn how to compute theory predictions)
databasepath = os.path.join(os.getenv("HOME"), "smodels-database/")
database = Database(databasepath)
expResults = database.getExpResults()
topList = slhaDecomposer.decompose(filename,
                                   sigcut=0.03 * fb,
                                   doCompress=True,
                                   doInvisible=True,
                                   minmassgap=5 * GeV)
allThPredictions = [theoryPredictionsFor(exp, topList) for exp in expResults]

# In[5]:

#Print the value of each theory prediction for each experimental
#result and the corresponding upper limit (see the obtain experimental upper limits HowTo to learn how
#to compute the upper limits).
#Also print the expected upper limit, if available
for thPreds in allThPredictions:
    if not thPreds: continue  #skip results with no predictions
Пример #12
0
## Load the database:
dbPath = os.path.join(os.getenv("HOME"), "smodels-database/")
database = Database(dbPath)

# ## How to select results from one publication (or conference note)

# In[6]:

#Select only the CMS SUS-12-028 conference note
expID = ["CMS-SUS-12-028"]

# In[7]:

#Loads the selected analyses
#(The INFO tells you that superseded analyses are not loaded, see below)
results = database.getExpResults(analysisIDs=expID)

# In[9]:

#Print all the results selected:
for exp in results:
    print exp
#Print the txnames constrained by the result in bracket notation:
exp = results[0]
for tx in exp.getTxNames():
    print tx, '=', tx.constraint

# In[10]:

#Print ALL info fields available:
exp = results[0]
Пример #13
0
def draw( strategy, databasepath, trianglePlot, miscol,
          diagcol, experiment, S, drawtimestamp, outputfile, nofastlim ):
    """
    :param trianglePlot: if True, then only plot the upper triangle of this
                         symmetrical matrix
    :param miscol: color to use when likelihood is missing
    :param diagcol: color to use for diagonal
    :param experiment: draw only for specific experiment ("CMS", "ATLAS", "all" )
    :param S: draw only for specific sqrts ( "8", "13", "all" )
    :param drawtimestamp: if true, put a timestamp on plot
    :param outputfile: file name of output file (matrix.png)
    :param nofastlim: if True, discard fastlim results
    """
    ROOT.gStyle.SetOptStat(0000)

    ROOT.gROOT.SetBatch()
    cols = [ ROOT.kRed+1, ROOT.kWhite, ROOT.kGreen+1, miscol, diagcol ]
    ROOT.gStyle.SetPalette(len(cols), (ctypes.c_int * len(cols))(*cols) )
    ROOT.gStyle.SetNumberContours(len(cols))

    ROOT.gStyle.SetPadLeftMargin(.25)

    sqrtses = [ 8, 13 ]
    if S not in [ "all" ]:
        sqrtses = [ int(S) ]

    colors.on = True
    setLogLevel ( "debug" )

    # dir = "/home/walten/git/smodels-database/"
    dir = databasepath
    d=Database( dir, discard_zeroes = True )
    print(d)
    analysisIds = [ "all" ]
    exps = [ "CMS", "ATLAS" ]
    if experiment in [ "CMS", "ATLAS" ]:
        analysisIds = [ experiment+"*" ]
        exps = [ experiment ]
    results = d.getExpResults( analysisIDs = analysisIds )
    if nofastlim:
        results = noFastlim ( results )
    results = sortOutDupes ( results )
    if S in [ "8", "13" ]:
        results = sortBySqrts ( results, int(S) )

    #results.sort()
    nres = len ( results )

    ROOT.c1=ROOT.TCanvas("c1","c1",1770,1540)
    ROOT.c1.SetLeftMargin(0.18)
    ROOT.c1.SetBottomMargin(0.21)
    ROOT.c1.SetTopMargin(0.06)
    ROOT.c1.SetRightMargin(0.01)
    if nres > 60:
        ROOT.c1.SetLeftMargin(0.12) ## seemed to work for 96 results
        ROOT.c1.SetBottomMargin(0.15)
        ROOT.c1.SetTopMargin(0.09)
        ROOT.c1.SetRightMargin(0.015)

    h=ROOT.TH2F ( "Correlations", "",
                  nres, 0., nres, nres, 0., nres )
    xaxis = h.GetXaxis()
    yaxis = h.GetYaxis()

    sze = 0.13 / math.sqrt ( nres )
    xaxis.SetLabelSize( 1.3*sze )
    yaxis.SetLabelSize( 1.3*sze )

    bins= { "CMS": { 8: [999,0], 13:[999,0] },
            "ATLAS": { 8: [999,0], 13: [999,0] } }

    n = len(results )
    for x,e in enumerate(results):
        label = e.globalInfo.id
        hasLikelihood = hasLLHD ( e )
        ana = analysisCombiner.getExperimentName ( e.globalInfo )
        #if not hasLikelihood:
        #    print ( "no likelihood: %s" % label )
        sqrts = int(e.globalInfo.sqrts.asNumber(TeV))
        color = ROOT.kCyan+2
        ymax=0
        if ana == "ATLAS":
            color = ROOT.kBlue+1
        if sqrts > 10.:
            color += 2
        if x < bins[ana][sqrts][0]:
            bins[ana][sqrts][0]=x
        if x > bins[ana][sqrts][1]:
            bins[ana][sqrts][1]=x
            ymax=x
        color = ROOT.kGray+2
        if len(exps)==1 and len(sqrtses)==1:
            label = label.replace("CMS-","").replace("ATLAS-","").replace("-agg","")
        label = "#color[%d]{%s}" % (color, label )
        xaxis.SetBinLabel(n-x, label )
        yaxis.SetBinLabel(x+1, label )
        for y,f in enumerate(results):
            if trianglePlot and y>x:
                continue
            isUn = analysisCombiner.canCombine ( e.globalInfo, f.globalInfo, strategy )
            # isUn = e.isUncorrelatedWith ( f )
            if isUn:
                h.SetBinContent ( n-x, y+1, 1. )
            else:
                h.SetBinContent ( n-x, y+1, -1. )
            if not hasLikelihood or not hasLLHD ( f ): ## has no llhd? cannot be combined
                h.SetBinContent ( n-x, y+1, 2. )
            if y==x:
                h.SetBinContent ( n-x, y+1, 3. )

    h.Draw("col")
    ROOT.bins, ROOT.xbins, ROOT.lines = {}, {}, []
    if len(exps)==1 and len(sqrtses)==1:
        ROOT.t1 = ROOT.TLatex()
        ROOT.t1.SetNDC()
        ROOT.t1.DrawLatex ( .45, .95, "%s, %d TeV" % ( exps[0], sqrtses[0] ) )
        
    for ana in exps:
        for sqrts in sqrtses:
            name= "%s%d" % ( ana, sqrts )
            ROOT.bins[name] = ROOT.TLatex()
            ROOT.bins[name].SetTextColorAlpha(ROOT.kBlack,.7)
            ROOT.bins[name].SetTextSize(.025)
            ROOT.bins[name].SetTextAngle(90.)
            ROOT.xbins[name] = ROOT.TLatex()
            ROOT.xbins[name].SetTextColorAlpha(ROOT.kBlack,.7)
            ROOT.xbins[name].SetTextSize(.025)
            xcoord = .5 * ( bins[ana][sqrts][0] + bins[ana][sqrts][1] )
            ycoord = n- .5 * ( bins[ana][sqrts][0] + bins[ana][sqrts][1] ) -3
            if len(sqrtses)>1 or len(exps)>1:
                ROOT.bins[name].DrawLatex(-4,xcoord-3,"#splitline{%s}{%d TeV}" % ( ana, sqrts ) )
                ROOT.xbins[name].DrawLatex(ycoord,-5,"#splitline{%s}{%d TeV}" % ( ana, sqrts ) )
            yt = bins[ana][sqrts][1] +1
            extrudes = 3 # how far does the line extrude into tick labels?
            xmax = n
            if trianglePlot:
                xmax = n-yt
            line = ROOT.TLine ( -extrudes, yt, xmax, yt )
            line.SetLineWidth(2)
            line.Draw()
            ymax = n
            if trianglePlot:
                ymax = yt
            xline = ROOT.TLine ( n-yt, ymax, n-yt, -extrudes )
            xline.SetLineWidth(2)
            xline.Draw()
            ROOT.lines.append ( line )
            ROOT.lines.append ( xline )
    line = ROOT.TLine ( -extrudes, 0, xmax, 0 )
    line.SetLineWidth(2)
    line.Draw()
    xline = ROOT.TLine ( n, ymax, n, -extrudes )
    xline.SetLineWidth(2)
    xline.Draw()
    ROOT.lines.append ( line )
    ROOT.lines.append ( xline )
    h.LabelsOption("v","X")
    if trianglePlot:
        for i in range(n+1):
            wline = ROOT.TLine ( n, i, n-i, i )
            wline.SetLineColor ( ROOT.kWhite )
            wline.Draw ()
            ROOT.lines.append ( wline )
            vline = ROOT.TLine ( i, n-i, i, n )
            vline.SetLineColor ( ROOT.kWhite )
            vline.Draw ()
        ROOT.lines.append ( vline )
        ROOT.title = ROOT.TLatex()
        ROOT.title.SetNDC()
        ROOT.title.SetTextSize(.025 )
        ROOT.title.DrawLatex(.28,.89, "#font[132]{Correlations between analyses, combination strategy: ,,%s''}" % strategy )
    ROOT.boxes = []
    if trianglePlot:
        for i,b in enumerate ( [ "pair is uncorrelated", "pair is correlated", "likelihood is missing" ] ):
            bx = 51
            by = 68 - 3*i
            box = ROOT.TBox(bx,by,bx+1,by+1)
            c = cols[i]
            if i > 0:
                c = cols[i+1]
            box.SetFillColor ( c )
            box.Draw()
            ROOT.boxes.append ( box )
            l = ROOT.TLatex()
            l.SetTextSize(.022)
            #if i == 2:
            #    c = 16
            l.SetTextColor ( c )
            b="#font[132]{%s}" % b ## add font
            l.DrawLatex ( bx+2, by, b )
            ROOT.boxes.append ( l )
    l = ROOT.TLatex()
    l.SetNDC()
    l.SetTextColor(ROOT.kGray+1)
    l.SetTextSize(.015)
    if drawtimestamp:
        l.DrawLatex ( .01, .01, "plot produced %s from database v%s" % \
                      ( time.strftime("%h %d %Y" ), d.databaseVersion ) )
    ROOT.gPad.SetGrid()
    if "@M" in outputfile:
        modifiers = ""
        if len(exps)==1:
            modifiers += exps[0]
        if len(sqrtses)==1:
            modifiers += str(sqrtses[0])
        outputfile = outputfile.replace("@M",modifiers)
    print ( "Plotting to %s" % outputfile )
    ROOT.c1.Print( outputfile )