Пример #1
0
def test_smooth():
	# Read in the image data.
	img = nib.load(pathtoclassdata + "ds114_sub009_t2r1.nii")
	data = img.get_data()[..., 4:]

	# Run the smoothvoxels function with fwhm = 0 (No smoothing) at time 7
	non_smoothed_data = smoothvoxels(data, 0, 7)

	# assert that data at time 7 and non_smoothed_data are equal since fwhm = 0
	assert_almost_equal(data[..., 7], non_smoothed_data)
	
	# Run the smoothvoxels function with fwhm = 5 at time 7
	smoothed_data = smoothvoxels(data, 5, 7)
	# assert that data at time 7 and smoothed_data are not equal
	assert_not_equals(data[..., 7].all(), smoothed_data.all())
Пример #2
0
def test_smooth():
    # Read in the image data.
    img = nib.load(pathtoclassdata + "ds114_sub009_t2r1.nii")
    data = img.get_data()[..., 4:]

    # Run the smoothvoxels function with fwhm = 0 (No smoothing) at time 7
    non_smoothed_data = smoothvoxels(data, 0, 7)

    # assert that data at time 7 and non_smoothed_data are equal since fwhm = 0
    assert_almost_equal(data[..., 7], non_smoothed_data)

    # Run the smoothvoxels function with fwhm = 5 at time 7
    smoothed_data = smoothvoxels(data, 5, 7)
    # assert that data at time 7 and smoothed_data are not equal
    assert_not_equals(data[..., 7].all(), smoothed_data.all())
# Load the image data for subject 1.
img = nib.load(pathtodata+"BOLD/task001_run001/bold.nii.gz")
data = img.get_data()
data = data[...,6:] # Knock off the first 6 observations.

#######################
# a. (my) smoothing   #
#######################

# Kind of arbitrary chosen time
time = 7
original_slice = data[..., 7]
# full width at half maximum (FWHM) 
fwhm = 1.5
smoothed_slice = smoothvoxels(data, fwhm, time)

# visually compare original_slice to smoothed_slice
plt.imshow(present_3d(smoothed_slice))
plt.colorbar()
plt.title('Smoothed Slice')
plt.clim(0,1600)
plt.savefig(location_of_images+"smoothed_slice.png")

plt.close()

plt.imshow(present_3d(original_slice))
plt.colorbar()
plt.title('Original Slice')
plt.clim(0,1600)
plt.savefig(location_of_images+"original_slice.png")
Пример #4
0

	data = data[...,num_TR_cut:] 
	

	#########################
	#  smoothing per slice  #
	#########################

	smoothed_data =np.zeros(data.shape)
	for time in np.arange(data.shape[-1]):
		# Kind of arbitrary chosen time

		sigma = 1.5
		fwhm = (2*np.sqrt(2 *np.log(2))) * sigma
		smoothed_data[...,time]= smoothvoxels(data, sigma, time)


	
	smoothed_data
	img = nib.Nifti1Image(smoothed_data, affine)
	nib.save(img,os.path.join(final_data + "smooth/",str(name)+"_bold_smoothed.nii"))
	### 266.3 MB for first one


	sys.stdout.write("-")
	sys.stdout.flush()

sys.stdout.write("\n")

# Load the image data for subject 1.
img = nib.load(pathtodata + "BOLD/task001_run001/bold.nii.gz")
data = img.get_data()
data = data[..., 6:]  # Knock off the first 6 observations.

#######################
# a. (my) smoothing   #
#######################

# Kind of arbitrary chosen time
time = 7
original_slice = data[..., 7]
# full width at half maximum (FWHM)
fwhm = 1.5
smoothed_slice = smoothvoxels(data, fwhm, time)

# visually compare original_slice to smoothed_slice
plt.imshow(present_3d(smoothed_slice))
plt.colorbar()
plt.title('Smoothed Slice')
plt.clim(0, 1600)
plt.savefig(location_of_images + "smoothed_slice.png")

plt.close()

plt.imshow(present_3d(original_slice))
plt.colorbar()
plt.title('Original Slice')
plt.clim(0, 1600)
plt.savefig(location_of_images + "original_slice.png")
Пример #6
0


	data = data[...,num_TR_cut:] 
	

	#########################
	#  Smoothing per slice  #
	#########################

	smoothed_data = np.zeros(data.shape)
	for time in np.arange(data.shape[-1]):
		# Kind of arbitrary chosen time

		sigma = 1
		smoothed_data[..., time] = smoothvoxels(data, sigma, time)


	
	smoothed_data
	img = nib.Nifti1Image(smoothed_data, affine)
	nib.save(img,os.path.join(final_data + "smooth/", str(name) + "_bold_smoothed.nii"))
	### 266.3 MB for first one


	sys.stdout.write("-")
	sys.stdout.flush()

sys.stdout.write("\n")