def _smoothldljgyro(gyo, gys, dgys, d2gys, fs):
    _sl = log_dimensionless_jerk(gyo, fs=fs, data_type="vel")
    # Cross product.
    _cp = np.array([np.cross(_dgy, _gy) for _dgy, _gy in zip(dgys, gys)])
    # Jerk magnitude
    _gyjerk = np.sum(np.power(np.linalg.norm(d2gys - _cp, axis=1),
                              2)) * (1 / fs)
    _gymag = np.max(np.linalg.norm(gys, axis=1))
    _dur = np.shape(gys)[0] * (1 / fs)
    _sls = -np.log(np.power(_dur, 3) * _gyjerk / np.power(_gymag, 2))
    return _sl, _sls
Пример #2
0
def analyse_smoothness_from_different_signals(data, fs, out_dir, diff_smooth):
    _cols = ('Nvia', 'Nmove', 'sparc_v', 'sparc_a', 'sparc_j', 'ldlj_v',
             'ldlj_a', 'ldlj_j')
    smoothness_summary = pd.DataFrame(columns=_cols)

    _outfile = "{0}/{1}/{2}".format(out_dir, diff_smooth['dir'],
                                    diff_smooth['fig_file'])
    with PdfPages(_outfile) as pdf:
        # Go through each data file and estimate smoothness using
        # both SPARC and LDLJ.
        for Nvia, Nmove, minfo, mdata in data:
            # Calculate speed, acceleration and jerk magnitude
            v = np.linalg.norm(np.array(mdata[['vx', 'vy', 'vz']]),
                               axis=1)[:-1]
            a = np.linalg.norm(np.array(mdata[['ax', 'ay', 'az']]),
                               axis=1)[:-2]
            j = np.linalg.norm(np.array(mdata[['jx', 'jy', 'jz']]),
                               axis=1)[:-3]

            # Estimate smoothness
            _sparcv, v1, v2 = sparc(v, fs=fs, fc=20., amp_th=0.05)
            _sparca, a1, a2 = sparc(a, fs=fs, fc=20., amp_th=0.05)
            _sparcj, j1, j2 = sparc(j, fs=fs, fc=20., amp_th=0.05)
            _ldljv = log_dimensionless_jerk(np.array(mdata[['vx', 'vy',
                                                            'vz']]),
                                            fs=fs,
                                            data_type="vel",
                                            scale="ms")
            _ldlja = log_dimensionless_jerk(np.array(mdata[['ax', 'ay',
                                                            'az']]),
                                            fs=fs,
                                            data_type="accl",
                                            scale="ms")
            _ldljj = log_dimensionless_jerk(np.array(mdata[['jx', 'jy',
                                                            'jz']]),
                                            fs=fs,
                                            data_type="jerk",
                                            scale="ms")

            # Update data row
            _datarow = {
                'Nvia': [int(Nvia)],
                'Nmove': [int(Nmove)],
                'sparc_v': [_sparcv],
                'sparc_a': [_sparca],
                'sparc_j': [_sparcj],
                'ldlj_v': [_ldljv],
                'ldlj_a': [_ldlja],
                'ldlj_j': [_ldljj]
            }

            # Update smoothness summary DF
            smoothness_summary = pd.concat(
                [smoothness_summary,
                 pd.DataFrame.from_dict(_datarow)],
                ignore_index=True)

            # plot data
            generate_summary_plot_for_movement(pdf, mdata, minfo, Nvia, Nmove,
                                               fs, v, v1, v2, a, a1, a2, j, j1,
                                               j2, _sparcv, _sparca, _sparcj,
                                               _ldljv, _ldlja, _ldljj)

            sys.stdout.write("\r{0}".format(minfo['file']))
            sys.stdout.flush()

        # Update PDF file details
        d = pdf.infodict()
        d['Title'] = 'Smoothness estimates for different signals'
        d['Author'] = u'Sivakumar Balasubramanian'
        d['Subject'] = 'Smoothness Analysis'
        d['Keywords'] = 'Smoothness Analysis'
        d['CreationDate'] = datetime.datetime(2017, 12, 16)
        d['ModDate'] = datetime.datetime.today()

        # Save summary data
        _dfile = "{0}/{1}/{2}".format(out_dir, diff_smooth['dir'],
                                      diff_smooth['data_file'])
        smoothness_summary.to_csv(path_or_buf=_dfile, index=False)
        sys.stdout.write("\rDone!")
def analyse_smoothness(params):
    # Initialize smoothness values variable.
    smoothvals = {
        'sparc': np.zeros((params.Ndur, params.Ntgt)),
        'ldljv': np.zeros((params.Ndur, params.Ntgt)),
        'ldlja': np.zeros((params.Ndur, params.Ntgt)),
        'sparcs': np.zeros((params.Ndur, params.Ntgt)),
        'ldljsv': np.zeros((params.Ndur, params.Ntgt)),
        'ldljsa': np.zeros((params.Ndur, params.Ntgt)),
        'sparcs-wom': np.zeros((params.Ndur, params.Ntgt)),
        'ldljsv-wom': np.zeros((params.Ndur, params.Ntgt)),
        'ldljsa-wom': np.zeros((params.Ndur, params.Ntgt)),
        'agr': np.zeros((params.Ndur, params.Ntgt)),
    }
    files = glob.glob("{0}/data_*.csv".format(params.outdir))

    for i, f in enumerate(files):
        dinx, tinx = get_dur_tgt_index_from_fname(f)

        # Read accl, vel and speed data
        mdata = read_get_vel_accl_data(f, params)

        # Remove mean for each accelerometer sensor data
        mdata['accls-wom'] = mdata['accls'] - np.mean(mdata['accls'], axis=0)
        mdata['vels-wom'] = np.cumsum(mdata['accls-wom'], axis=0) * params.dt
        mdata['spds-wom'] = np.linalg.norm(mdata['vels-wom'], axis=1)

        # Estimate AGR.
        _g = (np.sqrt(len(mdata['accl'].T)) * 98.1)
        agr = 20 * np.log10(np.linalg.norm(mdata['accl']) / _g)

        # Calculate smoothness - SPARC
        _sparc, _, _ = sparc(mdata['spd'], fs=params.fs)
        _sparcs, _, _ = sparc(mdata['spds'], fs=params.fs)
        _sparcswom, _, _ = sparc(mdata['spds-wom'], fs=params.fs)

        # Calculate smoothness - LDLJ
        # From velocity
        _ldljv = log_dimensionless_jerk(mdata['vel'],
                                        fs=params.fs,
                                        data_type="vel")
        _ldljsv = log_dimensionless_jerk(mdata['vels'],
                                         fs=params.fs,
                                         data_type="vel")
        _ldljsvwom = log_dimensionless_jerk(mdata['vels-wom'],
                                            fs=params.fs,
                                            data_type="vel")
        # From velocity
        _ldlja = log_dimensionless_jerk(mdata['accl'],
                                        fs=params.fs,
                                        data_type="accl")
        _ldljsa = log_dimensionless_jerk(mdata['accls'],
                                         fs=params.fs,
                                         data_type="accl")
        _ldljsawom = log_dimensionless_jerk(mdata['accls-wom'],
                                            fs=params.fs,
                                            data_type="accl")

        # Save data.
        smoothvals['sparc'][dinx, tinx] = _sparc
        smoothvals['sparcs'][dinx, tinx] = _sparcs
        smoothvals['sparcs-wom'][dinx, tinx] = _sparcswom
        smoothvals['ldljv'][dinx, tinx] = _ldljv
        smoothvals['ldljsv'][dinx, tinx] = _ldljsv
        smoothvals['ldljsv-wom'][dinx, tinx] = _ldljsvwom
        smoothvals['ldlja'][dinx, tinx] = _ldlja
        smoothvals['ldljsa'][dinx, tinx] = _ldljsa
        smoothvals['ldljsa-wom'][dinx, tinx] = _ldljsawom
        smoothvals['agr'][dinx, tinx] = agr

        sys.stdout.write("\r {0:3d}/{1:3d} | {2}".format(i, len(files), f))
    sys.stdout.write("\nDone!")

    return smoothvals
Пример #4
0
def _smoothldlja(ac, acs, acwom, acswom, fs):
    _sl = log_dimensionless_jerk(ac, fs=fs, data_type="accl")
    _sls = log_dimensionless_jerk(acs, fs=fs, data_type="accl")
    _slwom = log_dimensionless_jerk(acwom, fs=fs, data_type="accl")
    _slswom = log_dimensionless_jerk(acswom, fs=fs, data_type="accl")
    return _sl, _sls, _slwom, _slswom
Пример #5
0
def _smoothldljv(v, vs, vwom, vswom, fs):
    _sl = log_dimensionless_jerk(v, fs=fs, data_type="vel")
    _sls = log_dimensionless_jerk(vs, fs=fs, data_type="vel")
    _slwom = log_dimensionless_jerk(vwom, fs=fs, data_type="vel")
    _slswom = log_dimensionless_jerk(vswom, fs=fs, data_type="vel")
    return _sl, _sls, _slwom, _slswom
Пример #6
0
def gen_sensordata_ldljmsoothness(fdetails, logdetails, g, dsratio):
    results = pd.DataFrame(columns=[
        'move', 'wg', 'ag', 'sgr', 'arms', 'wrms', 'loa', 'lsa', 'lsaw', 'To',
        'Tsa', 'Tsaw', 'aoms', 'asms', 'aswms', 'jo', 'jsa', 'jsaw'
    ])
    for _fr in fdetails.iterrows():
        sys.stdout.write("\r N: {0:04d} {1}".format(_fr[1]['N'],
                                                    _fr[1]['fname']))
        # Read file data.
        origdata = pd.read_csv(
            _fr[1]["fname"], sep=", ", header=0,
            index_col=None).rename(columns={"# time": "time"})
        # Time and global kinematics
        t = np.array(origdata['time'])
        aco = np.array(origdata[['aox', 'aoy', 'aoz']]).T
        jo = np.array(origdata[['jox', 'joy', 'joz']]).T
        wo = np.array(origdata[['wox', 'woy', 'woz']]).T

        # Get sensor data
        ts, acs, ws = get_sensor_data(t, aco, wo, jo, g, dsratio)

        # True LDLJ smoothness
        fs = 1 / (t[1] - t[0])
        loa = pysm.log_dimensionless_jerk(aco.T[::dsratio, :],
                                          fs / dsratio,
                                          data_type='accl',
                                          scale='ms')
        loafac = pysm.log_dimensionless_jerk_factors(aco.T[::dsratio, :],
                                                     fs / dsratio,
                                                     data_type='accl',
                                                     scale='ms')

        # Sensor LDLJ smoothness from just accelerometer
        fss = 1 / (ts[1] - ts[0])
        lsa = pysm.log_dimensionless_jerk_imu(acs.T, None, g, fss)
        lsafac = pysm.log_dimensionless_jerk_imu_factors(acs.T, None, g, fss)

        # Sensor LDLJ smoothness from just accelerometer and gyroscope
        lsaw = pysm.log_dimensionless_jerk_imu(acs.T, ws.T, g, fss)
        lsawfac = pysm.log_dimensionless_jerk_imu_factors(acs.T, ws.T, g, fss)

        # Signal measures
        _N = np.shape(acs)[1]
        _sgr = np.linalg.norm(acs) / (np.sqrt(_N) * np.linalg.norm(g))
        _N = np.shape(aco)[1]
        _arms = np.linalg.norm(aco) / np.sqrt(_N)
        _N = np.shape(wo)[1]
        _wrms = np.linalg.norm(wo) / np.sqrt(_N)

        # Update data.
        _df = pd.DataFrame.from_dict({
            'move': [_fr[1]['N']],
            'wg': [_fr[1]['wg']],
            'ag': [_fr[1]['ag']],
            'sgr': [_sgr],
            'arms': [_arms],
            'wrms': [_wrms],
            'loa': [loa],
            'lsa': [lsa],
            'lsaw': [lsaw],
            'To': [loafac[0]],
            'Tsa': [lsafac[0]],
            'Tsaw': [lsawfac[0]],
            'aoms': [loafac[1]],
            'asms': [lsafac[1]],
            'aswms': [lsawfac[1]],
            'jo': [loafac[2]],
            'jsa': [lsafac[2]],
            'jsaw': [lsawfac[2]]
        })
        results = results.append(_df, ignore_index=True, sort=False)
    return results
Пример #7
0
def generate_imuldlj_summary(t, T, g, wi, agvals, wgvals, dsratio, logdetails,
                             results):
    # Generate simulated data
    proc = multiprocessing.Pool(1)

    # Run the simulation for 1000 different movements.
    for i, _vals in enumerate(np.array([agvals, wgvals]).T):
        ag, wg = _vals
        sys.stdout.write("\r{2}:: SGR: {0} | Wg: {1}".format(ag, wg, i))
        # params
        params = [t, T, g, wi, ag, wg, dsratio]
        # rawdata = proc.map(gen_original_and_sensor_data, [params])[0]
        rawdata = gen_original_and_sensor_data(params)

        # Save data.
        save_rawdata(ag, wg, i, logdetails, t, rawdata)

        # True LDLJ smoothness
        fs = 1 / (t[1] - t[0])
        acclo, wo = rawdata[0].T, rawdata[2].T
        loa = pysm.log_dimensionless_jerk(acclo,
                                          fs,
                                          data_type='accl',
                                          scale='ms')
        loafac = pysm.log_dimensionless_jerk_factors(acclo,
                                                     fs,
                                                     data_type='accl',
                                                     scale='ms')

        ts, accls, ws = rawdata[3], rawdata[4].T, rawdata[5].T
        fs = 1 / (ts[1] - ts[0])

        # Sensor LDLJ smoothness from just accelerometer
        lsa = pysm.log_dimensionless_jerk_imu(accls, None, g, fs)
        lsafac = pysm.log_dimensionless_jerk_imu_factors(accls, None, g, fs)

        # Sensor LDLJ smoothness from just accelerometer and gyroscope
        lsaw = pysm.log_dimensionless_jerk_imu(accls, ws, g, fs)
        lsawfac = pysm.log_dimensionless_jerk_imu_factors(accls, ws, g, fs)

        # True gyroscope smoothness

        # Sensor smoothness from gyroscope

        # Update data.
        _N = np.shape(wo)[0]
        _wg = np.linalg.norm(wo) / np.sqrt(_N)
        _N = np.shape(accls)[0]
        _sgr = np.linalg.norm(accls) / (np.sqrt(_N) * np.linalg.norm(g))
        _df = pd.DataFrame.from_dict({
            'move': [i],
            'loa': [loa],
            'lsa': [lsa],
            'lsaw': [lsaw],
            'To': [loafac[0]],
            'Tsa': [lsafac[0]],
            'Tsaw': [lsawfac[0]],
            'aoms': [loafac[1]],
            'asms': [lsafac[1]],
            'aswms': [lsawfac[1]],
            'jo': [loafac[2]],
            'jsa': [lsafac[2]],
            'jsaw': [lsawfac[2]],
            'wg': [wg],
            'ag': [ag],
            '_wg': [_wg],
            'sgr': [_sgr]
        })
        results = results.append(_df, ignore_index=True, sort=True)
    return results
def get_smooth_vals(params):
    cols = [
        "via", "dur", "gynorm", "viarep", "gynormrep", "wg", "sgr", "lao",
        "las", "laws", "laserr", "lawserr", "lgyo", "lgys", "lgyserr"
    ]

    # Indices to be used for accessing data
    _accinx = ['ax', 'ay', 'az']
    _accsinx = ['axs', 'ays', 'azs']
    _gyinx = ['gyx', 'gyy', 'gyz']
    _gysinx = ['gyxs', 'gyys', 'gyzs']
    _dgysinx = ['dgyxs', 'dgyys', 'dgyzs']
    _d2gysinx = ['d2gyxs', 'd2gyys', 'd2gyzs']
    smoothvals = pd.DataFrame(columns=cols)
    indices = get_all_indices(params)
    cnt = 0
    # define progress bar
    widgets = ['[', pb.Timer(), '] ', pb.Bar(), ' (', pb.ETA(), ')']
    bar = pb.ProgressBar(widgets=widgets, maxval=params.Ntotal)
    for inx in indices:
        _f = Params.fnamestr.format(*inx)
        if os.path.isfile(_f) is True:
            # read reconstrucuted data
            data = pd.read_csv(filepath_or_buffer=_f, delimiter=',')
            data = data.rename(columns=lambda x: x.strip())
            _N = len(data)
        else:
            continue

        # Sensor to gravity ratio
        _g = np.sqrt(_N) * np.linalg.norm(params.grav)
        _s = np.linalg.norm(np.array(data[_accsinx]))
        _sgr = _s / _g

        # w_rms
        _wg = np.linalg.norm(data[_gyinx]) / np.sqrt(_N)

        # Sampling frequency
        fs = Params.fs / params.Dur[inx[1]]

        # LDLJ of global linear acceleration and angular rotation
        lao = pysm.log_dimensionless_jerk(np.array(data[_accinx]),
                                          fs,
                                          data_type='accl',
                                          scale='ms')
        lgyo = pysm.log_dimensionless_jerk(np.array(data[_gyinx]),
                                           fs,
                                           data_type='vel',
                                           scale='max')

        # LDLJ of from IMU data
        las = pysm.log_dimensionless_jerk_imu(np.array(data[_accsinx]), None,
                                              params.grav, fs)
        laws = pysm.log_dimensionless_jerk_imu(np.array(data[_accsinx]),
                                               np.array(data[_gysinx]),
                                               params.grav, fs)
        laserr = 100 * (las - lao) / np.abs(lao)
        lawserr = 100 * (laws - lao) / np.abs(lao)

        # LDLJ of gyroscope data
        lgys = _smoothldljgyro(np.array(data[_gysinx]),
                               np.array(data[_dgysinx]),
                               np.array(data[_d2gysinx]), fs)
        lgyserr = 100 * (lgys - lgyo) / np.abs(lgyo)

        # Append to dataframe
        _data = {
            "via": [params.nVia[inx[0]]],
            "dur": params.Dur[inx[1]],
            "gynorm": [params.gyNorm[inx[2]]],
            "viarep": [inx[3]],
            "gynormrep": [inx[4]],
            "wg": [_wg],
            "sgr": [_sgr],
            "lao": [lao],
            "las": [las],
            "laws": [laws],
            "laserr": [laserr],
            "lawserr": [lawserr],
            "lgyo": [lgyo],
            "lgys": [lgys],
            "lgyserr": [lgyserr]
        }
        smoothvals = smoothvals.append(pd.DataFrame.from_dict(_data),
                                       ignore_index=True)
        cnt += 1
        bar.update(cnt)
    return smoothvals