Пример #1
0
    def setUp(self):
        ndim = 3
        nt = 100
        ne = 100
        ncomp = 1

        problems = OrderedDict()
        problems['exp'] = TensorProduct(ndim=ndim, func='exp')
        problems['tanh'] = TensorProduct(ndim=ndim, func='tanh')
        problems['cos'] = TensorProduct(ndim=ndim, func='cos')

        sms = OrderedDict()
        sms['LS'] = LS()
        sms['QP'] = QP()
        sms['KRG'] = KRG(theta0=[1e-2] * ndim)
        sms['KPLS'] = KPLS(theta0=[1e-2] * ncomp, n_comp=ncomp)
        sms['KPLSK'] = KPLSK(theta0=[1] * ncomp, n_comp=ncomp)
        sms['GEKPLS'] = GEKPLS(theta0=[1e-2] * ncomp,
                               n_comp=ncomp,
                               delta_x=1e-1)
        if compiled_available:
            sms['IDW'] = IDW()
            sms['RBF'] = RBF()
            sms['RMTC'] = RMTC()
            sms['RMTB'] = RMTB()

        t_errors = {}
        t_errors['LS'] = 1.0
        t_errors['QP'] = 1.0
        t_errors['KRG'] = 1e-5
        t_errors['KPLS'] = 1e-5
        t_errors['KPLSK'] = 1e-5
        t_errors['GEKPLS'] = 1e-5
        if compiled_available:
            t_errors['IDW'] = 1e-15
            t_errors['RBF'] = 1e-2
            t_errors['RMTC'] = 1e-1
            t_errors['RMTB'] = 1e-1

        e_errors = {}
        e_errors['LS'] = 1.5
        e_errors['QP'] = 1.5
        e_errors['KRG'] = 1e-2
        e_errors['KPLS'] = 1e-2
        e_errors['KPLSK'] = 1e-2
        e_errors['GEKPLS'] = 1e-2
        if compiled_available:
            e_errors['IDW'] = 1e0
            e_errors['RBF'] = 1e0
            e_errors['RMTC'] = 2e-1
            e_errors['RMTB'] = 2e-1

        self.nt = nt
        self.ne = ne
        self.ndim = ndim
        self.problems = problems
        self.sms = sms
        self.t_errors = t_errors
        self.e_errors = e_errors
Пример #2
0
    def test_rmtb(self):
        import numpy as np
        import matplotlib.pyplot as plt

        from smt.surrogate_models import RMTB

        xt = np.array([0.0, 1.0, 2.0, 3.0, 4.0])
        yt = np.array([0.0, 1.0, 1.5, 0.5, 1.0])

        xlimits = np.array([[0.0, 4.0]])

        sm = RMTB(
            xlimits=xlimits,
            order=4,
            num_ctrl_pts=20,
            energy_weight=1e-15,
            regularization_weight=0.0,
        )
        sm.set_training_values(xt, yt)
        sm.train()

        num = 100
        x = np.linspace(0.0, 4.0, num)
        y = sm.predict_values(x)

        plt.plot(xt, yt, "o")
        plt.plot(x, y)
        plt.xlabel("x")
        plt.ylabel("y")
        plt.legend(["Training data", "Prediction"])
        plt.show()
Пример #3
0
    def test_linear_search(self):
        for ls in ["bracketed", "cubic", "quadratic", "null"]:
            self.sms[ls] = RMTB(xlimits=self.xlimits,
                                line_search=ls,
                                print_global=False)
            self.sms[ls].set_training_values(self.xt, self.yt)

            with Silence():
                self.sms[ls].train()

            error = compute_rms_error(self.sms[ls], self.xref, self.yref)
            self.assert_error(error, 0.0, 1e-1)
Пример #4
0
def get_F110_interp():
    this_dir = os.path.split(__file__)[0]

    xt, yt, xlimits = get_data()

    interp = RMTB(
        xlimits=xlimits,
        num_ctrl_pts=15,
        order=4,
        approx_order=2,
        nonlinear_maxiter=40,
        solver_tolerance=1.e-20,
        # solver='lu', derivative_solver='lu',
        energy_weight=1.e-4,
        regularization_weight=0.e-18,
        extrapolate=False,
        print_global=False,
        data_dir=os.path.join(this_dir, '_smt_cache'),
    )

    # interp = KRG(theta0=[0.1]*3, data_dir='_smt_cache/')

    interp.set_training_values(xt, yt)
    interp.train()

    return interp
Пример #5
0
    def setUp(self):
        ndim = 2
        self.nt = 50
        self.ne = 10

        self.problem = Sphere(ndim=ndim)

        self.sms = sms = OrderedDict()
        if compiled_available:
            sms['IDW'] = IDW()
            sms['RBF'] = RBF()
            sms['RMTB'] = RMTB(regularization_weight=1e-8,
                               nonlinear_maxiter=100,
                               solver_tolerance=1e-16)
            sms['RMTC'] = RMTC(regularization_weight=1e-8,
                               nonlinear_maxiter=100,
                               solver_tolerance=1e-16)
Пример #6
0
    def setUp(self):
        ndim = 3
        nt = 500
        ne = 100

        problems = OrderedDict()
        problems["sphere"] = Sphere(ndim=ndim)

        sms = OrderedDict()
        if compiled_available:
            sms["RMTC"] = RMTC(num_elements=6, extrapolate=True)
            sms["RMTB"] = RMTB(order=4, num_ctrl_pts=10, extrapolate=True)

        self.nt = nt
        self.ne = ne
        self.problems = problems
        self.sms = sms
Пример #7
0
    def train(self, X_train, y_train):
        if self.flavour == 'bspline':
            self.smt_model = RMTB(xlimits=self.xlimits,
                                  smoothness=self.smoothness,
                                  approx_order=self.approx_order,
                                  line_search=self.line_search,
                                  order=self.order,
                                  num_ctrl_pts=self.num_ctrl_pts)
        if self.flavour == 'cubic':
            self.smt_model = RMTC(xlimits=self.xlimits,
                                  smoothness=self.smoothness,
                                  approx_order=self.approx_order,
                                  line_search=self.line_search,
                                  order=self.order,
                                  num_elements=self.num_elements)

        super(RMTSModel, self).train(X_train, y_train)
Пример #8
0
    def setUp(self):
        # xt = np.random.rand(5, 1) * 10.0
        self.xt = np.array(
            [[3.6566495, 4.64266046, 7.23645433, 6.04862594, 8.85571712]]).T
        self.yt = function_test_1d(self.xt)

        self.xlimits = np.array([[0.0, 25.0]])

        self.smref = smref = RMTB(xlimits=self.xlimits, print_global=False)
        smref.set_training_values(self.xt, self.yt)
        with Silence():
            smref.train()

        self.xref = np.array([[0.0, 6.25, 12.5, 18.75, 25.0]]).T
        self.yref = smref.predict_values(self.xref)

        self.sms = {}
Пример #9
0
    def setUp(self):
        ndim = 2
        nt = 5000
        ne = 100

        problems = OrderedDict()
        problems['sphere'] = Sphere(ndim=ndim)

        sms = OrderedDict()
        if compiled_available:
            sms['RBF'] = RBF()
            sms['RMTC'] = RMTC()
            sms['RMTB'] = RMTB()

        self.nt = nt
        self.ne = ne
        self.problems = problems
        self.sms = sms
Пример #10
0
    def setUp(self):
        ndim = 2
        nt = 5000
        ne = 100

        problems = OrderedDict()
        problems['sphere'] = Sphere(ndim=ndim)

        sms = OrderedDict()
        if compiled_available:
            sms['RBF'] = RBF()
            sms['RMTC'] = RMTC()
            sms['RMTB'] = RMTB()
            sms['MFK'] = MFK(theta0=[1e-2] * ndim, eval_noise=True)

        self.nt = nt
        self.ne = ne
        self.problems = problems
        self.sms = sms
Пример #11
0
    def setUp(self):
        ndim = 2
        nt = 5000
        ne = 100

        problems = OrderedDict()
        problems["sphere"] = Sphere(ndim=ndim)

        sms = OrderedDict()
        if compiled_available:
            sms["RBF"] = RBF()
            sms["RMTC"] = RMTC()
            sms["RMTB"] = RMTB()
            sms["MFK"] = MFK(theta0=[1e-2] * ndim)

        self.nt = nt
        self.ne = ne
        self.problems = problems
        self.sms = sms
def rMTBSimba(xt, yt, xtest, ytest, funXLimits):
    t = RMTB(xlimits=funXLimits,
             min_energy=True,
             nonlinear_maxiter=20,
             print_prediction=False)
    t.set_training_values(xt, yt)
    # Add the gradient information
    #    for i in range(ndim):
    #        t.set_training_derivatives(xt,yt[:, 1+i].reshape((yt.shape[0],1)),i)
    t.train()

    # Prediction of the validation points
    print('RMTB,  err: ' + str(compute_rms_error(t, xtest, ytest)))
    # plot prediction/true values
    title = 'RMTB'
    return t, title, xtest, ytest
Пример #13
0
    def setUp(self):
        ndim = 3
        nt = 5000
        ne = 500

        problems = OrderedDict()
        problems['sphere'] = Sphere(ndim=ndim)
        problems['exp'] = TensorProduct(ndim=ndim, func='exp')
        problems['tanh'] = TensorProduct(ndim=ndim, func='tanh')
        problems['cos'] = TensorProduct(ndim=ndim, func='cos')

        sms = OrderedDict()
        if compiled_available:
            sms['RMTC'] = RMTC()
            sms['RMTB'] = RMTB()

        t_errors = {}
        t_errors['RMTC'] = 1e-1
        t_errors['RMTB'] = 1e-1

        e_errors = {}
        e_errors['RMTC'] = 1e-1
        e_errors['RMTB'] = 1e-1

        ge_t_errors = {}
        ge_t_errors['RMTC'] = 1e-2
        ge_t_errors['RMTB'] = 1e-2

        ge_e_errors = {}
        ge_e_errors['RMTC'] = 1e-2
        ge_e_errors['RMTB'] = 1e-2

        self.nt = nt
        self.ne = ne
        self.problems = problems
        self.sms = sms
        self.t_errors = t_errors
        self.e_errors = e_errors
        self.ge_t_errors = ge_t_errors
        self.ge_e_errors = ge_e_errors
Пример #14
0
    def setUp(self):
        ndim = 3
        nt = 5000
        ne = 500

        problems = OrderedDict()
        problems["sphere"] = Sphere(ndim=ndim)
        problems["exp"] = TensorProduct(ndim=ndim, func="exp")
        problems["tanh"] = TensorProduct(ndim=ndim, func="tanh")
        problems["cos"] = TensorProduct(ndim=ndim, func="cos")

        sms = OrderedDict()
        if compiled_available:
            sms["RMTC"] = RMTC()
            sms["RMTB"] = RMTB()

        t_errors = {}
        t_errors["RMTC"] = 1e-1
        t_errors["RMTB"] = 1e-1

        e_errors = {}
        e_errors["RMTC"] = 1e-1
        e_errors["RMTB"] = 1e-1

        ge_t_errors = {}
        ge_t_errors["RMTC"] = 1e-2
        ge_t_errors["RMTB"] = 1e-2

        ge_e_errors = {}
        ge_e_errors["RMTC"] = 1e-2
        ge_e_errors["RMTB"] = 1e-2

        self.nt = nt
        self.ne = ne
        self.problems = problems
        self.sms = sms
        self.t_errors = t_errors
        self.e_errors = e_errors
        self.ge_t_errors = ge_t_errors
        self.ge_e_errors = ge_e_errors
Пример #15
0
    def train(self, train_method, **kwargs):
        """Trains the surrogate model with given training data.

        Parameters
        ----------
        train_method : str
            Training method among ``IDW``, ``KPLS``, ``KPLSK``, ``KRG``, ``LS``, ``QP``, ``RBF``, ``RMTB``, ``RMTC``
        kwargs : dict
            Additional keyword arguments supported by SMT objects

        """

        if train_method == 'IDW':
            self.trained = IDW(**kwargs)
        elif train_method == 'KPLS':
            self.trained = KPLS(**kwargs)
        elif train_method == 'KPLSK':
            self.trained = KPLSK(**kwargs)
        elif train_method == 'KRG':
            self.trained = KRG(**kwargs)
        elif train_method == 'LS':
            self.trained = LS(**kwargs)
        elif train_method == 'QP':
            self.trained = QP(**kwargs)
        elif train_method == 'RBF':
            self.trained = RBF(**kwargs)
        elif train_method == 'RMTB':
            self.trained = RMTB(xlimits=self.limits, **kwargs)
        elif train_method == 'RMTC':
            self.trained = RMTC(xlimits=self.limits, **kwargs)
        else:
            raise ValueError(
                'train_method must be one between IDW, KPLS, KPLSK, KRG, LS, QP, RBF, RMTB, RMTC'
            )

        self.trained.set_training_values(self.x_samp, self.m_prop)
        self.trained.train()
Пример #16
0
    def setUp(self):
        ndim = 2
        nt = 10000
        ne = 1000

        problems = OrderedDict()
        problems["sphere"] = Sphere(ndim=ndim)
        problems["exp"] = TensorProduct(ndim=ndim, func="exp", width=5)
        problems["tanh"] = TensorProduct(ndim=ndim, func="tanh", width=5)
        problems["cos"] = TensorProduct(ndim=ndim, func="cos", width=5)

        sms = OrderedDict()
        sms["LS"] = LS()
        sms["QP"] = QP()
        if compiled_available:
            sms["RMTC"] = RMTC(num_elements=20, energy_weight=1e-10)
            sms["RMTB"] = RMTB(num_ctrl_pts=40, energy_weight=1e-10)

        t_errors = {}
        t_errors["LS"] = 1.0
        t_errors["QP"] = 1.0
        t_errors["RMTC"] = 1.0
        t_errors["RMTB"] = 1.0

        e_errors = {}
        e_errors["LS"] = 1.5
        e_errors["QP"] = 1.5
        e_errors["RMTC"] = 1.0
        e_errors["RMTB"] = 1.0

        self.nt = nt
        self.ne = ne
        self.problems = problems
        self.sms = sms
        self.t_errors = t_errors
        self.e_errors = e_errors
Пример #17
0
    def test_linear_solver(self):
        for ls in [
                "krylov-dense",
                "dense-chol",
                "lu",
                "ilu",
                "krylov",
                "krylov-lu",
                "krylov-mg",
                "gs",
                "jacobi",
                "mg",
                "null",
        ]:
            self.sms[ls] = RMTB(xlimits=self.xlimits,
                                solver=ls,
                                print_global=False)
            self.sms[ls].set_training_values(self.xt, self.yt)

            with Silence():
                self.sms[ls].train()

            error = compute_rms_error(self.sms[ls], self.xref, self.yref)
            self.assert_error(error, 0.0, 1.1)
Пример #18
0
    def setUp(self):
        ndim = 2
        nt = 10000
        ne = 1000

        problems = OrderedDict()
        problems['sphere'] = Sphere(ndim=ndim)
        problems['exp'] = TensorProduct(ndim=ndim, func='exp', width=5)
        problems['tanh'] = TensorProduct(ndim=ndim, func='tanh', width=5)
        problems['cos'] = TensorProduct(ndim=ndim, func='cos', width=5)

        sms = OrderedDict()
        sms['LS'] = LS()
        sms['QP'] = QP()
        if compiled_available:
            sms['RMTC'] = RMTC(num_elements=20, energy_weight=1e-10)
            sms['RMTB'] = RMTB(num_ctrl_pts=40, energy_weight=1e-10)

        t_errors = {}
        t_errors['LS'] = 1.0
        t_errors['QP'] = 1.0
        t_errors['RMTC'] = 1e-2
        t_errors['RMTB'] = 1e-2

        e_errors = {}
        e_errors['LS'] = 1.5
        e_errors['QP'] = 1.5
        e_errors['RMTC'] = 1e-2
        e_errors['RMTB'] = 1e-2

        self.nt = nt
        self.ne = ne
        self.problems = problems
        self.sms = sms
        self.t_errors = t_errors
        self.e_errors = e_errors
Пример #19
0
from smt.surrogate_models import RMTB
from smt.examples.one_D_step.one_D_step import get_one_d_step, plot_one_d_step

xt, yt, xlimits = get_one_d_step()

interp = RMTB(num_ctrl_pts=100,
              xlimits=xlimits,
              nonlinear_maxiter=20,
              solver_tolerance=1e-16,
              energy_weight=1e-14,
              regularization_weight=0.)
interp.set_training_values(xt, yt)
interp.train()

plot_one_d_step(xt, yt, xlimits, interp)
Пример #20
0
    def setUp(self):
        ndim = 3
        nt = 100
        ne = 100
        ncomp = 1

        problems = OrderedDict()
        problems["exp"] = TensorProduct(ndim=ndim, func="exp")
        problems["tanh"] = TensorProduct(ndim=ndim, func="tanh")
        problems["cos"] = TensorProduct(ndim=ndim, func="cos")

        sms = OrderedDict()
        sms["LS"] = LS()
        sms["QP"] = QP()
        sms["KRG"] = KRG(theta0=[1e-2] * ndim)
        sms["MFK"] = MFK(theta0=[1e-2] * ndim)
        sms["KPLS"] = KPLS(theta0=[1e-2] * ncomp, n_comp=ncomp)
        sms["KPLSK"] = KPLSK(theta0=[1] * ncomp, n_comp=ncomp)
        sms["GEKPLS"] = GEKPLS(theta0=[1e-2] * ncomp,
                               n_comp=ncomp,
                               delta_x=1e-1)
        sms["GENN"] = genn()
        if compiled_available:
            sms["IDW"] = IDW()
            sms["RBF"] = RBF()
            sms["RMTC"] = RMTC()
            sms["RMTB"] = RMTB()

        t_errors = {}
        t_errors["LS"] = 1.0
        t_errors["QP"] = 1.0
        t_errors["KRG"] = 1e0
        t_errors["MFK"] = 1e0
        t_errors["KPLS"] = 1e0
        t_errors["KPLSK"] = 1e0
        t_errors["GEKPLS"] = 1e0
        t_errors["GENN"] = 1e0
        if compiled_available:
            t_errors["IDW"] = 1e0
            t_errors["RBF"] = 1e-2
            t_errors["RMTC"] = 1e-1
            t_errors["RMTB"] = 1e-1

        e_errors = {}
        e_errors["LS"] = 1.5
        e_errors["QP"] = 1.5
        e_errors["KRG"] = 1e-2
        e_errors["MFK"] = 1e-2
        e_errors["KPLS"] = 1e-2
        e_errors["KPLSK"] = 1e-2
        e_errors["GEKPLS"] = 1e-2
        e_errors["GENN"] = 1e-2
        if compiled_available:
            e_errors["IDW"] = 1e0
            e_errors["RBF"] = 1e0
            e_errors["RMTC"] = 2e-1
            e_errors["RMTB"] = 2e-1

        self.nt = nt
        self.ne = ne
        self.ndim = ndim
        self.problems = problems
        self.sms = sms
        self.t_errors = t_errors
        self.e_errors = e_errors
Пример #21
0
                        tempdata[i, j, k].copy()
                    ]))
                counter += 1
            else:
                skipcount += 1

a = np.array(krigedata)
xt = a[:, 0:3]
yt = a[:, 3:]

print('Data points: ' + str(counter) + ' Skipped: ' + str(skipcount))

# define a RMTS spline interpolant
# TODO replace with a different SMT surrogate
limits = np.array([[0.2, 0.8], [0.05, 1.0], [0.0, 3.5]])
sm = RMTB(order=3, xlimits=limits, nonlinear_maxiter=100)
sm.set_training_values(xt, yt)
sm.train()

# plot a grid of values at a slice of throttle = 0.5

machs = np.linspace(0.2, 0.8, 25)
alts = np.linspace(0.0, 35000., 25)
machs, alts = np.meshgrid(machs, alts)
pred = np.zeros((25, 25, 3))
pred2 = np.zeros((25, 25, 3))

# altitude is scaled by 1 / 10000 everywhere to make the indepdent variables of O(1)
# this is necessary for certain methods like IDW
# TODO examine other slices (for example holding Mach = 0.5 and varying other two parameters)
for i in range(25):
Пример #22
0
    # assemble the test and training set using holdout method
    test_set = arr
    training_set = np.zeros((0, 6))
    for j in range(n_split):
        if j != i_array:
            training_set = np.vstack([training_set, arrays[j]])
    xt = training_set[:, 0:3]
    yt = training_set[:, 5]

    # train the model

    # define a RMTS spline interpolant
    # TODO replace with a different SMT surrogate
    limits = np.array([[0.2, 0.8], [0.05, 1.0], [0.0, 3.5]])
    sm = RMTB(print_global=False,
              order=3,
              xlimits=limits,
              nonlinear_maxiter=100)
    # sm1 = KRG(hyper_opt='TNC', corr='abs_exp')
    # sm2 = KPLS(n_comp=3, corr='abs_exp', hyper_opt='TNC')
    sm3 = KPLSK(print_global=False,
                n_comp=3,
                theta0=np.ones(3),
                corr='squar_exp')
    sm4 = QP(print_global=False, )
    sm5 = LS(print_global=False, )
    sm1 = KPLS(print_global=False, n_comp=3, theta0=np.ones(3), corr='abs_exp')
    sm2 = KRG(print_global=False, theta0=np.ones(3), corr='abs_exp')
    sm6 = MOE(smooth_recombination=False, n_clusters=2)
    experts_list = dict()
    experts_list['KRG'] = (KRG, {'theta0': np.ones(3), 'corr': 'abs_exp'})
    experts_list['RBF'] = (RBF, dict())
Пример #23
0
    # Compute the gradient
    for i in range(ndim):
        yd = fun(xt, kx=i)
        yt = np.concatenate((yt, yd), axis=1)

    # Construction of the validation points
    ntest = 500
    sampling = LHS(xlimits=fun.xlimits)
    xtest = sampling(ntest)
    ytest = fun(xtest)

    ########### The RMTB model

    t = RMTB(
        xlimits=fun.xlimits,
        min_energy=True,
        nonlinear_maxiter=20,
        print_prediction=False,
    )
    t.set_training_values(xt, yt[:, 0])
    # Add the gradient information
    for i in range(ndim):
        t.set_training_derivatives(xt, yt[:, 1 + i].reshape((yt.shape[0], 1)),
                                   i)
    t.train()

    # Prediction of the validation points
    y = t.predict_values(xtest)
    print("RMTB,  err: " + str(compute_rms_error(t, xtest, ytest)))
    if plot_status:
        k, l = 0, 0
        f, axarr = plt.subplots(3, 2)
Пример #24
0
    def setup(self):
        nn = self.options['num_nodes']
        raw1_file = self.options['raw1_file']
        raw2_file = self.options['raw2_file']

        raw1 = np.genfromtxt(raw1_file)
        raw2 = np.loadtxt(raw2_file)

        nc = self.nc = 7
        self.np = 12
        ncp = self.nc * self.np

        self.na = 10
        self.nz = 73
        self.ne = 37
        angle = np.zeros(self.na)
        azimuth = np.zeros(self.nz)
        elevation = np.zeros(self.ne)

        index = 0
        for i in range(self.na):
            angle[i] = raw1[index]
            index += 1
        for i in range(self.nz):
            azimuth[i] = raw1[index]
            index += 1

        index -= 1
        azimuth[self.nz - 1] = 2.0 * np.pi
        for i in range(self.ne):
            elevation[i] = raw1[index]
            index += 1

        angle[0] = 0.0
        angle[-1] = np.pi / 2.0
        azimuth[0] = 0.0
        azimuth[-1] = 2 * np.pi
        elevation[0] = 0.0
        elevation[-1] = np.pi

        counter = 0
        data = np.zeros((self.na, self.nz, self.ne, self.np * self.nc))
        flat_size = self.na * self.nz * self.ne
        for p in range(self.np):
            for c in range(nc):
                data[:, :, :, counter] = \
                    raw2[nc * p + c][119:119 + flat_size].reshape((self.na,
                                                                   self.nz,
                                                                   self.ne))
                counter += 1

        # self.MBI = MBI(data, [angle, azimuth, elevation],
        #                      [4, 10, 8],
        #                      [4, 4, 4])

        angles, azimuths, elevations = np.meshgrid(angle,
                                                   azimuth,
                                                   elevation,
                                                   indexing='ij')

        xt = np.array(
            [angles.flatten(),
             azimuths.flatten(),
             elevations.flatten()]).T
        yt = np.zeros((flat_size, ncp))
        counter = 0
        for p in range(self.np):
            for c in range(nc):
                yt[:, counter] = data[:, :, :, counter].flatten()
                counter += 1

        xlimits = np.array([
            [angle[0], angle[-1]],
            [azimuth[0], azimuth[-1]],
            [elevation[0], elevation[-1]],
        ])

        this_dir = os.path.split(__file__)[0]

        # Create the _smt_cache directory if it doesn't exist
        if not os.path.exists(os.path.join(this_dir, '_smt_cache')):
            os.makedirs(os.path.join(this_dir, '_smt_cache'))

        self.interp = interp = RMTB(
            xlimits=xlimits,
            num_ctrl_pts=8,
            order=4,
            approx_order=4,
            nonlinear_maxiter=2,
            solver_tolerance=1.e-20,
            energy_weight=1.e-4,
            regularization_weight=1.e-14,
            # smoothness=np.array([1., 1., 1.]),
            extrapolate=False,
            print_global=True,
            data_dir=os.path.join(this_dir, '_smt_cache'),
        )

        interp.set_training_values(xt, yt)
        interp.train()

        if multiview_installed:
            info = {
                'nx': 3,
                'ny': ncp,
                'user_func': interp.predict_values,
                'resolution': 100,
                'plot_size': 8,
                'dimension_names': ['Angle', 'Azimuth', 'Elevation'],
                'bounds': xlimits.tolist(),
                'X_dimension': 0,
                'Y_dimension': 1,
                'scatter_points': [xt, yt],
                'dist_range': 0.0,
            }

            # Initialize display parameters and draw GUI
            MultiView(info)

        self.x = np.zeros((nn, 3))

        # Inputs
        self.add_input('fin_angle',
                       0.0,
                       units='rad',
                       desc='Fin angle of solar panel')

        self.add_input(
            'azimuth',
            np.zeros((nn, )),
            units='rad',
            desc='Azimuth angle of the sun in the body-fixed frame over time')

        self.add_input(
            'elevation',
            np.zeros((nn, )),
            units='rad',
            desc='Elevation angle of the sun in the body-fixed frame over time'
        )

        # Outputs
        self.add_output(
            'exposed_area',
            np.zeros((nn, self.nc, self.np)),
            desc='Exposed area to sun for each solar cell over time',
            units='m**2',
            lower=-5e-3,
            upper=1.834e-1)

        self.declare_partials('exposed_area', 'fin_angle')

        rows = np.tile(np.arange(ncp), nn) + np.repeat(ncp * np.arange(nn),
                                                       ncp)
        cols = np.tile(np.repeat(0, ncp), nn) + np.repeat(np.arange(nn), ncp)

        self.declare_partials('exposed_area', 'azimuth', rows=rows, cols=cols)
        self.declare_partials('exposed_area',
                              'elevation',
                              rows=rows,
                              cols=cols)
Пример #25
0
from smt.surrogate_models import RMTB
from smt.examples.rans_crm_wing.rans_crm_wing import get_rans_crm_wing, plot_rans_crm_wing

xt, yt, xlimits = get_rans_crm_wing()

interp = RMTB(num_ctrl_pts=20,
              xlimits=xlimits,
              nonlinear_maxiter=100,
              energy_weight=1e-12)
interp.set_training_values(xt, yt)
interp.train()

plot_rans_crm_wing(xt, yt, xlimits, interp)